LECTURE NOTES

ON

DESIGN AND DRAWING OF STEEL STRUCTURES ACADEMIC YEAR 2023-24

III B.Tech -II SEMESTER (R20)

T.SANKARA RAO, Assistant Professor

DEPARTMENT OF CIVIL ENGINEERING

V S M COLLEGE OF ENGINEERING RAMCHANDRAPURAM
 E.G. DISTRICT-533255

DESIGN AND DRAWING OF STEEL STRUCTURES

UNIT - I

Connections: Riveted connections - definition, rivet strength and capacity, Welded connections: Introduction, Advantages and disadvantages of weldingStrength of welds-Butt and fillet welds: Permissible stresses - IS Code requirements. Design of fillet weld subjected to moment acting in the plane and at right angles to the plane of the joints.

UNIT - II

Beams: Allowable stresses, design requirements as per IS Code-Design of simple and compound beams-Curtailment of flange plates, Beam to beam connection, check for deflection, shear, buckling, check for bearing, laterally unsupported beams.
UNIT -III
Tension Members and compression members: General Design of members subjected to direct tension and bending -effective length of columns. Slenderness ratio - permissible stresses. Design of compression members, struts etc.Roof Trusses: Different types of trusses - Design loads - Load combinations as per IS Code recommendations, structural details -Design of simple roof trusses involving the design of purlins, members and joints - tubular trusses.

UNIT - IV

Design of Columns: Built up compression members - Design of lacings and battens. Design Principles of Eccentrically loaded columns, Splicing of columns. UNIT - V
Design of Column Foundations: Design of slab base and gusseted base. Column bases subjected moment.
UNIT - VI
Design of Plate Girder: Design consideration - I S Code recommendations
Design of plate girder-Welded - Curtailment of flange plates, stiffeners - splicing and connections.
Design of Gantry Girder: impact factors - longitudinal forces, Design of Gantry girders.

Introduction
Steel structure:-
The structures which are constructed with structural steel are called as steel structures.
Advantages:

1. Better quality control when compared to R.C.C. structures.
2. Different Components in steel structures are fastened together by simple Connecting techniques such as reeding, bolting and riveting.
3. Pre-fabricated steel structures results in Proper planning of Constoquation, Saving of time result in speed erection ξ economic of structure. 4. Steel structural members an readily disassembled at the end of the useful life which resulte in environmental \& economical advantages.
4. The scrap value of steel structure is high.
5. Repairing of retro fitting of steel structures. are very simple.

Disadvantages:-

1. Steel ruts easily ξ thus requires a protection from Corrosion this increases the maintanence Cost of steel structures.
2. steal beam is an excellent heat conductor. steel structures are to be protected by insulating materials thus increases fire proofing cost.
[Fire proofing material - Apexi painting]
3. Steel structures requires skill personal and very high accuracy is needed desired in fabrication.
4. If the compression members of steel structures are longer छ slender may have suspendibility to buckled.

Loads:-

1. Dead load.
2. Imposed load (8) live load.
3. Mind load.
4. Snow load
5. Special load e छ
6. Load Combination.

Structural members:-
It is nothing but fores acting on the Steel structures.
lo Flexcral members.
2. Tension member.
3. Compression members.
4. Torsional members.

Standard structural Sections:-

1. I-Section.
2. Channel Section.
3. Angel Section.
d. T-Section:
s. Flats:

I-Section:

$$
t_{f}=\frac{b-t_{w}}{4}
$$

wheres
${ }^{t_{f}} \rightarrow$ thickness of flange.

ISJB \rightarrow Indian standard Junior Beam:
ISCB $\rightarrow \quad$ " \quad lite bean
ISL \rightarrow vide $"$

ISMB \rightarrow

$$
\rightarrow \quad 4
$$

"
" medium "
ISHB \rightarrow
Channel Section:

$$
t_{f}=\frac{b-t_{\omega}}{2}
$$

ISJC \rightarrow Indian standard Junior channel..
ISMC \rightarrow " " medium "
ISLC \rightarrow u \quad lite
ISSC \rightarrow " \quad special
ISMPC \rightarrow " " parallel flange"
Angle Sections:-

1. Equal Indian standard Angle [ISA]
2. unequal ISA

T-sections:

ISJT \rightarrow Indian standarid Junior T-Séction.
ISNT \rightarrow " \quad Normale
ISHT \rightarrow " "moltight wo (oi) wide flange T-sectiop
ISSP \rightarrow " "shat-logged
ISLT \rightarrow " u long-logged" "
Flats:-
ISRO \rightarrow 'Indian standard round bare.
ISSQ \rightarrow " "Square "

ONIT-I
Connections.
Types of Connections:-

1. Riveted connections.
2. Bolted Connections.
3. Welded Connections.
4. pinned Connections \&
5. Combinations.

Riveted Connections:-
Types of rivet: :
to Span Head

Nominal Dia-d
2. pan Head. K. $1.6 d$ *

3. Flat head.

4. Mushroom head:

Terminology:-

Pitch (P):
It is the c / c distance of adjacent rivets
(8) bolts measures in the direction of styes.

Gap (8) gauge (g):
A row of rivet which is parallel to the direction of sties is Called a gauge line. The normal distance blow the two adjacent gauge lines is Called as gauge.
Eccentricity or Edge distance (E) :
The distance b/w the edge of a member (8) Cover plate from the Centre of the nearest rivet bolt is edge distance.
Types of rivet joints:-
(i) Depending upon arrangement of rivet \& plates.

10 Lap joint
2. But joint.

Lap joint:
a). Single riveting
b). Chain riveting.
c). slagged (8) $2 i g$ - 2 ag rivet.

Buff joint:
a). Single riveting.
b). chain riveting.
c.). रig-tag rivet
(ii) Depending upon the mode of Load transmission 10 Single shear.
2. Double shear.
3. Multiple shear.
4. Bearing shear.
(iii) Depending upon nature $\&$ location of Load 1. Direct shear Connection.
2. ECcentric Connection.
3. pure moment shear Connection.
4. Moment shear Connection:

Melded Connections:-
It is the process of Connecting metal Pieces by application of heat with (01) without Pressure.
Welding process types:

1. Gas welding [The edges are to be joint (or)

Netted on oxyactelene gas flame.
2. Froze welding.

3: Thermit welding.
4. Electric Ara welding.

Advantages:-

1. As no hole is require for welding.
2. No reduction of area.
3. So structural member can easily take the loads.
4. In welding fillet plate ξ gusted plater oren't used.

Types of velds:-

1. Fillet veld:
2. single beam butt joint:

3. Double beam buff joint:

4.

Single ' J '- Buff joint:

5. Square buff joint:
\square
where,
$t=$ throat thickness
$S=$ Size of veld

$$
t=0.75
$$

* Thickness of thicker plate \quad Minimum Size

36 to 56 mm
56 to 150 mm
above 150 mm
comm
12 mm
16 mm
(c) Max. Size of rel $=t-1.5$
[This is for only square edges]
(ii) remaining max. Size of Net de $\frac{3}{4} t$ where $t=$ thickness of weld.
(ii) Effective length $\left(l_{0}\right)=$ overall lenglts $-2 S$
\rightarrow Minimum effective length is greater than
' 4 ' times of size of weld
(iv) $\therefore \quad \operatorname{lmin}>45$
(v) Lap length $(l)>5 t$
where $t=$ thickness of thinner plate.
(vi) End returns >25
where S size of weld

Design strength in fircet veld:-

$$
\begin{aligned}
& \qquad f_{\omega d}=\frac{f_{\omega n}}{V_{m \omega}} \\
& \text { for, } \\
& {\left[\text { fillet weld }\left(f_{\omega d}\right)=\frac{f_{u} / \sqrt{3}}{V_{m \omega}}\right]}
\end{aligned}
$$

for,

$$
\text { Butt weld }\left(f_{\omega 0}\right)=\frac{f_{y}}{v_{m \omega}}
$$

where,

$$
\begin{aligned}
& f_{w n}=f_{u} / \sqrt{3} \\
& v_{m \omega}=1.25[\text { for shop veld }] \\
& V_{m \omega}=1.5[\text { for field purpose }] . \\
& \left.P_{\omega}=f_{\omega d} \times A_{\omega}\right] \\
& f_{u}=410 \\
& f_{y}=\$ 50
\end{aligned}
$$

where.
$P_{w}=$ Design strength in fillet weld

$$
A_{\omega}=l_{\omega} \times t
$$

$t=$ throat thicloness,

1. Design a Suitable filet retd to Connect the the plates as shown in fig.

80)

$$
\begin{aligned}
& \text { Min. Size of } 8 \text { veld } S_{\min }=4 \mathrm{~mm} \\
& \text { Max. Size of weld }
\end{aligned} \begin{aligned}
& t-1.5 \\
& =8-1.5 \\
& =6.5 \mathrm{~mm}=6 \mathrm{~mm}
\end{aligned}
$$

\therefore Size of weld $S=6 \mathrm{~mm}$

$$
\begin{aligned}
t & =0.75 \\
& =0.7 \times 6 \\
\therefore t & =4.2 \mathrm{~mm}
\end{aligned}
$$

Design strength:

$$
\begin{aligned}
& f_{\omega d}=\frac{f_{\omega n}}{v_{m \omega}} \\
& f_{\omega n}=f_{a} / \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{410}{\sqrt{3}} \\
f_{\omega n} & =236.7 \mathrm{~N} / \mathrm{mm}^{2} \\
\therefore f_{\omega d} & =\frac{f_{\omega n}}{V_{m \omega l}} \\
& =\frac{236.7}{1.5} \\
\therefore f_{\omega d} & =15.7 .81 \mathrm{~N} / \mathrm{mm}^{2} \\
P_{\omega} & =f_{\omega d} \times A_{\omega} \\
115 \times 10^{3} & =157.81 A_{\omega} \\
157.81 A_{\omega} & =115 \times 10^{3} \\
A_{\omega} & =\frac{115 \times 10^{3}}{157.81} \\
A_{\omega} & =728.72 \mathrm{~mm}^{2}
\end{aligned}
$$

where,

$$
\begin{aligned}
A_{\omega} & =l_{\omega} \times t \\
t & =4.2 \\
728.72 & =4.2 t_{\omega} \\
\therefore \quad l_{\omega} & =173.5 \mathrm{~mm}
\end{aligned}
$$

(2.)

28
Min. Size of reeld $=6 \mathrm{~mm}$

$$
\begin{aligned}
\text { Max-Size of reeld } & =t-1.5 \\
& =12-1.5 \\
& =10.5 \mathrm{~mm} \simeq 10 \mathrm{~mm}
\end{aligned}
$$

\therefore Size of veld $S=10 \mathrm{~mm}$

$$
\begin{aligned}
t & =0.75 \\
& =0.7 \times 10 \\
\therefore \quad t & =7 \mathrm{~mm}
\end{aligned}
$$

Design strength:

$$
\begin{aligned}
& f_{\omega d}=\frac{f_{\omega n}}{\theta_{\text {mw }}} \\
& f_{\text {won }}=f a / \sqrt{3} \\
& =\frac{410}{\sqrt{3}} \\
& \therefore f_{\text {WO }}=236.7 \mathrm{~N} / \mathrm{mm}^{2} \\
& f_{\text {cod }}=\frac{f_{\omega n}}{\nu_{m \omega}} \\
& -\frac{236.7}{1.5} \\
& \therefore f_{\omega 0} d=157.81 \mathrm{~N} / \mathrm{mm}^{2} \\
& P_{\omega}=f_{\omega} d \times A_{\omega} \\
& 125 \times 10^{3}=157.81 . A_{60} \\
& A_{\omega}=\frac{125 \times 10^{3}}{157-81} \\
& A_{\omega}=792.1 \mathrm{~mm}^{2}
\end{aligned}
$$

where,

$$
A_{w}=l_{w} \times t
$$

$$
\begin{aligned}
& Q_{\omega}=\frac{792.1}{7} \\
& \therefore\left[l_{\omega}=113.15 \mathrm{~mm} \simeq 110 \mathrm{~mm}\right.
\end{aligned}
$$

3. Design a Suitable longitudinal fillet weld to Connect the plates as shown in fig. to transmit a pull equal to the fall strength of small plate. plates are 12 mm thictonens. Assume shop welding.

-0) Thickness of rel $d=12 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Max. Size of weld }=t-1.5 \\
&=12-1.5 \\
&=10.5 \mathrm{~mm} \simeq 10 \mathrm{~mm} \\
& t=10 \mathrm{~mm}
\end{aligned}
$$

Min. Size of weld $-4 \mathrm{~mm}[$ Assume $]$
Troat thiclones $t=0.75$

$$
\begin{aligned}
&=0.7 \times 10 \\
&=7 \mathrm{~mm} \\
& t=7 \mathrm{~mm}
\end{aligned}
$$

Small plate Area $=100 \times 12$

$$
A=1200 \mathrm{~mm}^{2} .
$$

Small plate strength,

$$
\Rightarrow A f_{y} / v_{m o}
$$

where,

$$
\begin{aligned}
& v_{m o}=1.1 \\
& f_{y}=250
\end{aligned}
$$

$$
\therefore \text { Small plate strength }=\frac{1200 \times 250}{1.1}
$$

$$
\begin{aligned}
& =272.72 \times 10^{3} \mathrm{~N} \\
& =272.72 \mathrm{kN} \\
& P=272.72 \mathrm{kN}
\end{aligned}
$$

Design strengfi:-

$$
\begin{aligned}
f_{\omega d} & =\frac{f_{\omega n}}{\ell_{\text {mw }}} \\
f_{\omega n} & =\frac{f_{u}}{\sqrt{3}} \\
& =\frac{410}{\sqrt{3}} \\
\therefore f_{\omega n} & =236.7 \mathrm{~N}_{\mathrm{mm}} \\
f_{\omega d} & =\frac{236.7}{1.25} \\
f_{\omega d} & =189.36 \mathrm{k} / \mathrm{mm}^{2} \\
P_{\omega} & =f_{\omega 0} \times A_{\omega} \\
272.72 \times 10^{3} & =189.36 \mathrm{Al}_{\omega} \\
f_{\omega} & =1440.22 \mathrm{~mm}^{2}
\end{aligned}
$$

where,

$$
\begin{aligned}
& A_{\omega}=l_{\omega} \times t \\
& l_{\omega}=\frac{1440.22}{7} \\
& l_{\omega}=205.74 \mathrm{~mm}=206 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { length of veld on each side } & =\frac{206}{2} \\
& =103 \mathrm{~mm}
\end{aligned}
$$

4. Design the welded joint as shown in below. Assuming permissible stresses in angles and fillet welds those are 150 MPa \& 108 MPa .

Given data,

$$
\begin{aligned}
\text { Permissible stress is angle } \sigma & =\left(f_{y} / g_{m 0}\right) \\
& =150 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Permissible stages in fillet held $f_{\text {wd }}=108 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\text { Min. Size of weld }=4 \mathrm{~mm}
$$

Max. Size of weld $t=x+\frac{3}{4} t=\frac{10 \times \times \frac{0^{6}}{10^{9}} \times x .}{}$
(Angle).

$$
=\frac{3}{4} \times 10
$$

$$
S=7 \mathrm{~mm}
$$

$$
=7.5 \mathrm{~mm} \simeq 7 \mathrm{~mm} / \mathrm{mg}
$$

\therefore Max. Size of weld $-t-1-5$
(plates)

$$
\begin{aligned}
& =-1.5 \\
& =8.5 \mathrm{~mm} \simeq 8 \mathrm{~mm}
\end{aligned}
$$

Scanned by CamScanner

$$
S=\sin
$$

Throat thickness 0.7 s

$$
\begin{aligned}
& 150 \times 1 \mathrm{~Pa} \\
& 150 \times \frac{10^{6}}{10^{9}} \times 10^{3} \mathrm{ss} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
=0.7(7) \cdot[\text { Consider Angle }
$$

$$
=4.9 \mathrm{~mm}
$$

max. nee [d]

$$
t=4.9 \mathrm{~mm}
$$

$$
\begin{aligned}
\text { Area of angle } & =19.03 \mathrm{~cm}^{2} \\
& =1903 \mathrm{~mm}^{2}\left[\text { from step } \int\right.
\end{aligned}
$$

tables].

Strengths of Angle $A g \times \sigma$

$$
\begin{aligned}
& =1903 \times 150 \\
& =28.545 \times 10^{3} \mathrm{~N} \\
P & =285450 \mathrm{kN}
\end{aligned}
$$

load $p=A_{\omega} \cdot f_{\text {od }}$

$$
\begin{array}{r}
285.95 \times 10^{3}=108 \times A_{\omega O} \\
A_{\omega}=\frac{285.95 \times 10^{3}}{108} \\
A_{\omega}=2643.05 \mathrm{~mm}^{2}
\end{array}
$$

where,

$$
A_{\omega}=l \omega x t
$$

$$
\begin{aligned}
l_{\omega} & =\frac{2643.05}{4.9} \\
& =539.39 \mathrm{~mm}=530 \mathrm{~mm} \\
l_{\omega} & =530 \mathrm{~mm}
\end{aligned}
$$

5. Two plater of $16 \mathrm{~mm}, 14 \mathrm{~mm}$ thickness are to be joint by a buff veld. The joint is subjected to a factored tensile force of 430 kN . Due to some reasons effective length of weld Could be provided (a) 175 mm only. check the safety of the joint. If Single V-buff weld is provided (b) Doable buff needed
a). If single 16 mm of single ' v '

b). If 66 mm of Double v Single $=\frac{5}{8} t$
 Double. t

NO
a) As per specification of is throat thickness,

$$
t_{\omega} \theta_{0}=\frac{5}{5} t
$$

$t=$ thicionex of thinner plate.

$$
\begin{aligned}
t_{\omega} & =\frac{5}{8} \times 14 \\
& =8.75 \mathrm{~mm}
\end{aligned}
$$

lengts of roeld $l_{w}=175 \mathrm{~mm}$
load $p=430 \mathrm{kN}$
14631F
strength of roeld $=$ Ag Awdofwd

$$
\begin{aligned}
& \quad\left[\begin{array}{l}
{\left[\begin{array}{l}
\left.f_{\omega d}=\frac{f_{y}}{\sigma \nu_{\omega m}}\right] \\
P=
\end{array}\right.} \\
\quad f_{\omega d}=\frac{2.50}{1.25} \\
=306.25 \times 10^{3} \mathrm{~N} \\
430>306.25
\end{array}\right. \\
& \hline
\end{aligned}
$$

\therefore Hence unde unde.
b) As per specification of is. throat thickness $=t$.

$$
t_{\omega}=14 \mathrm{~mm}
$$

lingth of reeld $l_{\mathrm{ar}}=175 \mathrm{~mm}$
load $P=430 \mathrm{kN}$
\&trength of weld $p=A_{\text {ad }} \times f_{\text {add }}$

$$
P=175 \times 14 \times \frac{250}{1.25}
$$

$P=490 \mathrm{kN}$
$430<490 \mathrm{kN}$
\therefore Hence safe.
6. A $75 \times 8 \mathrm{~mm}$ tie member is to transmit a factored load of 1455 kN . Design fillet reed \& neccersary aver lap for the taser shown in fig. Assume gusset plate to be 12 mm thickness

(c)
 $\simeq 54$

Field welding
of (a) Factor of safety for shop ne l (ding,

$$
\begin{aligned}
V_{\text {ma }} & =\operatorname{los} 1.25 \\
\text { Min. Size of weld } d & =4 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Max. Size of weld } & =t-1.5 \\
& =8 \\
& =6.5 \mathrm{~mm} \simeq 6 \mathrm{~mm} \\
& =6 \mathrm{~mm}
\end{aligned}
$$

Throat thickness $t=0.75$

$$
\begin{aligned}
& =0.7 \times 6 \\
& =4.2 \mathrm{~mm}
\end{aligned}
$$

$$
t=4.2 \mathrm{~mm}
$$

load

$$
\begin{aligned}
P & =145 \mathrm{kN} \\
& =145 \times \mathrm{co}^{3} \mathrm{~N}
\end{aligned}
$$

Design strength:

$$
\begin{aligned}
& f_{\omega d}=\frac{f_{a} / \sqrt{3}}{V_{m \omega}} \\
&=\frac{410 / \sqrt{3}}{1.25} \\
& f_{\omega d}=189.37 \mathrm{~N} / \mathrm{mm}^{2} \\
& P=f_{\omega d} \times A_{\omega} \\
& 145 \times 10^{3}=189.37 A_{\omega} \\
& 189.37 A_{\omega}=145 \times 10^{3} \\
& A_{\omega}=\frac{145 \times 10^{3}}{189.37}
\end{aligned}
$$

$$
A_{\omega}=765.69 \mathrm{~mm}^{2}
$$

where,

$$
\begin{aligned}
A_{\omega} & =l_{\omega} \times t \\
765.69 & =4 \cdot 2 l_{\omega} \\
4 \cdot 2 l_{\omega} & =765.69 \\
l_{\omega} & =\frac{-765.69}{4.2} \\
l_{\omega} & =182.31 \mathrm{~mm} \\
\text { length of welding on each side } & =\frac{182.31}{2} \\
& =91.15 \approx 92 \\
& =92 \mathrm{~mm}
\end{aligned}
$$

End returns:

$$
\begin{aligned}
\text { End returns } & =25 \\
& =2 \times 6 \\
& =12 \mathrm{~mm}
\end{aligned}
$$

Overall length of weld $=92+92+12+12$

$$
=208 \mathrm{~mm}
$$

(b)

$$
\begin{aligned}
& 2 \times \text { Overlap t } 75=\text { length of plate } \\
& \left.\begin{array}{c}
2 \times \text { overlap }+75=182.31 \\
2 \times \text { overlap } p=182.31-75 \\
\end{array} \begin{array}{l}
=107.31 \\
\text { Overlap }=\frac{107.31}{2} \\
=53.65 \mathrm{~mm}=54 \mathrm{~mm} \\
\text { Overlap }=54 \mathrm{~mm}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { End returns } & =2 \mathrm{~S} \\
& =2 \times 6 \\
& =12 \mathrm{~mm} \\
\text { Overall length of weld } & =54+54+12+12+75 \\
& =1320 \mathrm{~m}=207 \mathrm{~mm}
\end{aligned}
$$

(c) Factor of Safety for field we doing,

$$
V_{m a} 1.5
$$

$$
\begin{aligned}
\text { Min. Size of need } & =4 \mathrm{~mm} \\
\text { Max. Size of weld } & =t-1.5 \\
& =8-1.5 \\
& =6.5 \mathrm{~mm} \simeq 6 \mathrm{~mm} \\
S & =6 \mathrm{~mm}
\end{aligned}
$$

Throat thickness $=0.75$

$$
\begin{aligned}
& =0.7 \times 6 \\
& =4.2 \mathrm{~mm}
\end{aligned}
$$

$$
t=4.2 \mathrm{~mm}
$$

load $P=145 \times 10^{3} \mathrm{~N}$
Design strength:

$$
\begin{aligned}
& f_{\omega d}=\frac{f_{u} / \sqrt{3}}{l_{m \omega}} \\
&=\frac{410 / \sqrt{3}}{1.5} \\
& f_{\omega d}=157.81 \mathrm{~m} / \mathrm{mm}^{2} \\
& P=f_{\omega d} \times A_{\omega} \\
& 145 \times 10^{3}=157.81 \times l_{\omega} \times 4.2 \\
& 662.79 l_{\omega}=145 \times 10^{3} \\
& l_{\omega}=218.76 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { length of welding on each side } & =\frac{218.76}{2} \\
& =109.38 \mathrm{~mm} \simeq \\
& =110 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { End returns } & =25 \\
& =2 \times 6 \\
& =12 \mathrm{~mm}
\end{aligned}
$$

Overall length of weld $=110+110+12 \times 12$

$$
\because 244 \mathrm{~mm}
$$

7. A $50 \times 10 \mathrm{~mm}$ fie member is to transmit a factored load of ${ }^{1625} \mathrm{kN}$. Design fillet weld \& neccessary overlap for the cases shown in fig. Assume gusset plate to be 12 mm tHicken.
(a).

(b) $f^{12 m m}$

shop weld
(c)

(a xn-18 181
[of (a) Factor of safety for shop weld,

$$
v_{m \omega}=1.25
$$

$$
\begin{aligned}
\text { Min. Size of veld } & =4 \mathrm{~mm} \\
\text { Max. Size of veld } & =t-1.5 \\
& =10-1.5 \\
& =8.5 \mathrm{~mm}=8 \mathrm{~mm} \\
& =8 \mathrm{~mm}
\end{aligned}
$$

Troat thickness $t=0.75$

$$
\begin{aligned}
& =0.7 \times 8 \\
& t=5.6 \mathrm{~mm}
\end{aligned}
$$

$$
\text { load } \begin{aligned}
p & =162 \mathrm{kN} \\
& =162 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Design strength,

$$
\begin{aligned}
f_{\omega d} & =\frac{f_{u} / \sqrt{3}}{V_{\text {max }}} \\
& =\frac{410 / \sqrt{3}}{1.25} \\
\therefore \quad f_{\omega d} & =189.37 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& P=f_{\omega d} \times A_{\omega} \\
& 162 \times 10^{3}=189.37 \times l_{\omega} \times 5.6 \\
& 1060.472 l_{\omega}=162 \times 10^{3} \\
& l_{\omega}=152.76 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { length of welding on each side } & =\frac{152.76}{2} \\
& =76.38 \mathrm{~mm}= \\
& =77 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { End return } & =25 \\
& =2 \times 8 \\
& =16 \mathrm{~mm}
\end{aligned}
$$

Overall length of reid $=77+77+16+16$

$$
=186 \mathrm{~mm}
$$

(b) $2 \times$ overlap $+50=$ length of ne eld

$$
\begin{aligned}
2 \times \text { overlap }+50 & =152.76 \\
2 \times \text { overlap } & =7152.76 .50 \\
& =102.76 \mathrm{~mm}
\end{aligned}
$$

Overlap: $\mathcal{N} \cdot \operatorname{sen} m \infty$

$$
\begin{aligned}
& =\frac{102.76}{2} \approx 103 \mathrm{~km} \\
& =51.38=52 \mathrm{~mm}
\end{aligned}
$$

Scanned by CamScanner
\therefore Overlap $=52 \mathrm{~mm}$
(c). Factor of safety for field welding,

$$
v_{\text {ma }}=1.5
$$

Min. Size of veld $=4 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Max. Size of weld }=t-1.5 \Rightarrow 10-1.5 \\
&=8.5 \simeq 8 \mathrm{~mm} \\
& S=8 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Throat thickness }=0.7 \mathrm{~s} \\
&=0.7 \times 8 \\
&=5.6 \mathrm{~mm} \\
& t=5.6 \mathrm{~mm} \\
& \text { load } p=162 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Resign strength:

$$
\begin{aligned}
f_{\text {ad }} & =\frac{f_{a} / \sqrt{3}}{l_{\text {mw }}} \\
& =\frac{410 / \sqrt{3}}{1.5} \\
f_{\text {God }} & =157.8 \mathrm{NN} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\begin{gathered}
P=\text { fad } \times A_{\omega} \\
162 \times 10^{3}=157.81 \times l_{\omega} \times 5.6 \\
883.73 l_{\omega}=162 \times 10^{3} \\
l_{\omega}=183.31 \mathrm{~mm}
\end{gathered}
$$

$$
\begin{aligned}
\text { length of welding on each side } & =\frac{183.31}{2} \\
& =96.65 \simeq 92 \mathrm{~mm}
\end{aligned}
$$

$$
\text { End returns } \begin{aligned}
& =25 \\
& =2 \times 8 \\
& =16 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Overall length of weld } & =92+92+16+16 \\
& =216 \mathrm{~mm}
\end{aligned}
$$

(b) End returns $=Q S \Rightarrow 2 \times 8$

$$
=16 \mathrm{~mm}
$$

Overall length of weld $=52+52+16+16+50$

$$
=186 \mathrm{~mm}
$$

UNIT -II
Beams.
Beam:-
It is one of the structural members Subjected to the loader perpendicular to the axis of the member
Types of Beans:-
to Simply Supported Beams.
2. Cantilever beam.
3. Propped Cantilever beams.
4. Over hanged beams.

Joist:-

- closely spaced beams Supposing flood or roofs of a building but not supposing to Other beams.
Gride:-
Large beans are used for supporting a no. of joists.
Purling of Rafters:-
Beams are also used to berry roof
loads in trusses. These beams are called Purling.
or Causes
Modes of failures:-
10 Bending failure:
It generally occured due to Crashing of Compressive flange of fracture of tension flange of the beam.

2. Shear failure:

It occurs due to buckling of neb of the beam near location of high shear force.
The beam can fail locally die to crushing
(r) buckling of Neb. Near the reaction of the concentrated load.

Deflection failure $\delta=\frac{5 \omega l^{4}}{384 E I}$

Types of Sections:-

1. Angle Section
2. I-Section.
3. channel Section.
L): Built up Section.
4. I-Section [Most economical and efficient Section].

Web Tripling:-
The web of the rolled Steel Section are Subjected to a large amount of stresses just below the Concentrated load \& above the Supprits.

Large bearing stresses age developed below the Concentrated loads to Heep the Seared 'stresses within the permissible limit. The:

- Concentrated Cadi should be transferred from flanges to the Neb 'on Sufficiently large. bearing areas..

$$
f_{\omega}=\left(b_{1}+n_{2}\right) t_{\omega} \cdot f_{y n} / \nu_{m 0}
$$

1. Step 1:-

Total ta rd load,

- (wa)

Factored load (8) design load $=1.5 \times 10 \mathrm{ad}$
Design bending moment $=\frac{W_{u} l_{2}^{2}}{8}$
Shear force $\left(V_{u}\right)=\frac{\text { wal }}{2}$
Step 2:- (Selection of section)

$$
\partial_{p}=\frac{M}{f_{y}} \times V_{m o}
$$

Step 3:- (sectional details)
like: Area, depth of section, bf $, t_{f}, t_{\omega} \& I_{x x}$
Step 4:- (Selection Classification)

$$
\begin{aligned}
\varepsilon & =\sqrt{\frac{250}{f_{y}}} \cdot(8) \quad \varepsilon=\left(\frac{250}{f_{y}}\right)^{1 / 2} \\
& \Rightarrow b / t_{f} \\
& \Rightarrow d / t_{\omega}
\end{aligned}
$$

step 5:- (check for shear)

$$
V_{d}=\frac{V_{n}}{V_{m 0}}
$$

$$
\begin{gathered}
V_{n}=v_{p}=\frac{A_{v} f_{y}}{\sqrt{3}} \\
V_{u}<v d
\end{gathered}
$$

Step 6:- (check for moment).

$$
\begin{aligned}
& M=? \\
& V=? \\
& V_{d}=? \\
& 0.6 \times V_{d}= \\
& M_{d}=\frac{B_{p} p_{p y}}{V_{m o}} \\
& B_{p}=Z_{e} / \rho_{2 p} \\
& \sqrt[M d]{ } \\
& =M /
\end{aligned}
$$

Step - : (check for Deflection)
Max deflection, $\delta_{\text {max }}=\frac{5 \operatorname{col} 4}{354 E 2}$

Design a suitable. I-section beam for a S.s Span of $5 \mathrm{~m} \&$ Carrying a dead load of $20 \mathrm{kN} / \mathrm{m}$ ξ imposed load of $40 \mathrm{kN} / \mathrm{m}$. Take $f y=250 \mathrm{~N} / \mathrm{mm}^{2}$.

Given data,
Span of beam $=5 \mathrm{~m}$
Imposed load (O.d.C) $=40 \mathrm{lon} / \mathrm{m}$
Dead load = $20100 / \mathrm{m}$

$$
f_{y}^{\prime}=250 \mathrm{~N} / \mathrm{mm}^{2}
$$

Step 1:- (Total load) $=40+20 \Rightarrow 60 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
\text { Factored load } & =1.5 \times \text { Total load } \\
& =1.5 \times 60 \\
\omega_{a} & =90 \mathrm{cN} / \mathrm{m}
\end{aligned}
$$

Design. Bending moment:

$$
\begin{aligned}
& \Rightarrow \frac{w_{u} l^{2}}{8} \\
& \Rightarrow \frac{90 \times 5^{2}}{8} \\
M_{u} & =281.25 \mathrm{kw}-\mathrm{m}
\end{aligned}
$$

shear force $v_{u}=\frac{\omega_{u}}{2}$

$$
=\frac{90^{\circ} \times 5}{2}
$$

Step 2:- (Selection of Section)

$$
\begin{aligned}
2 p & =\frac{M}{f_{y}} \times V_{m 0} \\
& =\frac{281.25 \times 10^{6}}{250} \times 1.1 \\
& =1.23 \times 10^{6} / 10^{3} \mathrm{~cm}^{3} \\
\therefore 2 p & =1237.5 \mathrm{~cm}^{3}
\end{aligned}
$$

Trial Section, [from steel Code book].
DSHB350@72.4 kglm;

$$
2 p=1268.69 \mathrm{~cm}^{3}
$$

(8)

ISNB 400@66.7 kg lm;

$$
2 p=1290.19 \mathrm{~cm}^{3}
$$

Let us trial with ISHB350@72.4 kg /m:

$$
2 p=1268.69 \mathrm{~cm}^{3}
$$

Step $3 i$ - Suede Sectional details [from steel

$$
\text { Area }=92.21 \mathrm{~cm}^{2}
$$

$$
\operatorname{tab}[e]
$$

Depth of section'; height = 3'50 mm ride.
Breadth of flange $=250 \mathrm{~mm}$

Thickness of flange $(t f)=11.6 \mathrm{~mm}$
Thickness of web ${ }^{\left(t_{\omega}\right)}=10.1 \mathrm{~mm}$
Modulus $I_{X X}=19802.8 \times 10^{4} \mathrm{~mm}^{4}$

$$
\gamma_{1}=12 \mathrm{~mm}
$$

Step 4:- (Selection dasification).

$$
\begin{aligned}
& \varepsilon=\sqrt{\frac{280}{f y}} \Rightarrow \sqrt{\frac{250}{250}}=1 \\
& \Rightarrow b / t_{f}=b / 2 / f f \Rightarrow \frac{250 / 2}{11.6} \\
&=10.77 \mathrm{~mm} \\
&=\frac{250}{166} \\
& \Rightarrow d / t_{w} \Rightarrow \frac{\left(h-2 t_{f}+\gamma_{1}\right)}{t_{60}} \\
& \Rightarrow \frac{350-2(11.6)+12}{10.1} \\
&=33.54 \mathrm{~mm}
\end{aligned}
$$

Step 5:- check for shear

$$
v_{d}=\frac{v_{n}}{v_{m 0}}
$$

the,

$$
v_{n}=v_{p}=\frac{A_{v} \cdot f_{y} \cdot}{\sqrt{3}}
$$

$$
\begin{aligned}
& V_{u}=.225 \mathrm{kN} \\
& A_{v}=h \times l_{\omega} \\
& =350 \times 10^{\circ} .1 \\
& =3535 \\
& \therefore v_{n}=v_{p}=\frac{(v) \cdot f y}{\sqrt{3}} \\
& =\frac{3535 \times 250}{\sqrt{3}} \\
& V_{n}=510.23 \times 10^{3} \mathrm{~N} \Rightarrow 510.23 / \mathrm{cN} \\
& \therefore v_{d}=\frac{510.23}{1.10} \\
& \therefore 243848 \\
& V_{d}=4663.84 \mathrm{kN} \\
& v_{u}<v_{d}
\end{aligned}
$$

\because Hence \&afe.
Step 6: check for moment,

$$
\begin{aligned}
& M_{u}=281.25 \mathrm{kN} \\
& v_{a}=225 \mathrm{kN} \\
& v_{d}=2463.84 \mathrm{kN} \\
& 0.6 \times v_{d}=0.6 \times 463.89
\end{aligned}
$$

$$
\begin{aligned}
&=278.304 \\
& M_{d}=\frac{B_{p} \cdot 2 p f y}{V_{m 0}}<\frac{1.2 \times 2 e \times f y}{V_{m 0}} \\
& B_{p}=\frac{2 e}{2 p} \\
& z_{e}=1131.6 \quad \text { (section modulus) } \\
& z_{p}=1268.69 \text { (plastic modulus) } \\
& B_{p}=\frac{1131.6}{1268.69} \\
& M_{d}=\frac{0.89 \times 1268.69 \times 250}{1.10}<\frac{1.2 \times 1131.6 \times 250}{1.10} \\
&=256.62<308.61 \mathrm{kN}-m \\
& M d<M
\end{aligned}
$$

\therefore Hence Safe.
step 7:- check for deflection,

$$
\begin{aligned}
\text { Max deflection, } \delta_{\text {max }} & =\frac{5 w . l 4}{384 E I} \\
& =\frac{5 \times 60 \times(5000)^{4}}{384 \times 2 \times 10^{5} \times 19802.8 \times 10^{4}} \\
\therefore \delta_{\text {max }} & =12.32 \mathrm{~mm}
\end{aligned}
$$

Web Buckling:-

Certain portion of the beam at supports act as Column to transfer the load. This Compressive frice on the web mana buckle on the beam. The load dispersion angle may be taken as 45°. Hence there is no need to check for web buckling
2. Design a Suitable I-Section beam for a S.S Span. of 8 m \& Carrying a dead load of $15 \mathrm{kN} / \mathrm{m}$ ξ imposed load of $60 / \mathrm{cN} / \mathrm{m}$. Take $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$, $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
sol) Given data,

Span of beam $=5 \mathrm{~m}$
$=5000 \mathrm{~mm}$
Imposed load (0.d.l) $=60 \mathrm{kw} / \mathrm{m}$
Dead load $=15 \mathrm{kN} / \mathrm{m}$

$$
f y=250 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
$$

step 1:-

$$
\begin{array}{r}
\text { Total load }=60+15 \\
\text { Total load }=75 \mathrm{kN} / \mathrm{m} \\
\omega=75 \mathrm{kN} / \mathrm{m}
\end{array}
$$

Factored load $\omega_{u}=1.5 \times 75$

$$
\begin{aligned}
& =112.5 \mathrm{kN} / \mathrm{m} \\
W_{a} & =112.5 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Design Bending moment,

$$
\begin{aligned}
M_{u} & =\frac{\omega_{u} l^{2}}{8} \\
& =\frac{112.5 \times 8^{2}}{8} \\
M_{u} & =900 \mathrm{kN} \ldots \mathrm{~m}
\end{aligned}
$$

Shear force,

$$
\begin{aligned}
V_{u} & =\frac{\omega_{u}}{2} \\
& =\frac{112.5 \times 8}{2} \\
V_{u} & =450 \mathrm{kN}
\end{aligned}
$$

step 2:- (Selection of section)

$$
\begin{aligned}
z_{p} & =\frac{M}{f_{y}} \times v_{m 0} \\
& =\frac{900 \times 10^{6}}{250} \times 1.10 \\
& =\frac{3.96 \times 10^{6}}{10^{3}} \mathrm{~cm}^{3} \\
z_{p} & =3960 \mathrm{~cm}^{3}
\end{aligned}
$$

Trial Section [from stee [Tode book]
ISNB600 @ $133.7 \mathrm{~kg} / \mathrm{m} ; 7_{p}=3986.66 \mathrm{~cm}^{3}$
Step 3:- Sectional Defails [from steel tables]

$$
A_{\text {rea }}=170.38 \mathrm{~cm}^{2}
$$

Depts of section, $h=600 \mathrm{~mm}$
vidth of frange, $b_{f}=250 \mathrm{~mm}$
Thicknen of flange, $t_{f}=21.3 \mathrm{~mm}$.
Thicknen of neeb, $t_{w}=11.2 \mathrm{~mm}$

$$
\text { Modulus, } \begin{aligned}
I_{x x} & =106198.5 \mathrm{~cm}^{4} \\
\gamma_{1} & =106198.5 \times 10^{4} \mathrm{~mm}^{4} \\
\gamma_{1} & =17 \mathrm{~mm}
\end{aligned}
$$

Step 4:- (Section Classification)

$$
\begin{aligned}
& \varepsilon \cdot \sqrt{\frac{210}{f y}} \\
& =\sqrt{\frac{250}{250}}=1 \\
& \Rightarrow b / t_{f}=\frac{b / 2}{t_{f}} \\
& =\frac{250 / 2}{21.3} \\
& \therefore b / t f=5.86 \mathrm{~mm} \\
& \Rightarrow d / t_{\omega} \Rightarrow \frac{h-2 t_{f}+\gamma 1}{t_{\omega}} \\
& =\frac{600-2(21.3)+17}{11.2} \\
& \therefore d / t_{\omega}=51.28 \mathrm{~mm}
\end{aligned}
$$

Step 5:- check for shear,

$$
V_{d}=\frac{V_{n}}{V_{m 0}}
$$

where,

$$
\begin{aligned}
v_{n} & =v_{d}=\frac{A_{v} \cdot f_{y}}{\sqrt{3}} \\
A_{v} & =h \times t_{w 0} \\
& =600 \times 11.2 \Rightarrow 6720 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
A_{v}=6720 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
v_{n}=v_{p} & =\frac{A_{v} \cdot f y}{\sqrt{3}} \\
& =\frac{6720 \times 250}{\sqrt{3}} \\
& =969.94 \times 10^{3} \mathrm{~N} \\
v_{n} & =969.94 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\therefore v_{d} & =\frac{969.94}{1.10} \\
& =881.76 \\
v_{d} & =881.76 \mathrm{kN}] ; v_{u}=450 \mathrm{kN} \\
v_{u} & <v_{d}
\end{aligned}
$$

\therefore thence safe
step 6:- check for moment,

$$
\begin{aligned}
M_{u} & =900 \mathrm{kN} \cdot \mathrm{~m} \\
V_{u} & =450 \mathrm{kN} \\
V_{d} & =881.76 \mathrm{kN} \\
0.6 \mathrm{~V} & =0.6 \times 881.76 \\
& =529.056
\end{aligned}
$$

$$
\begin{aligned}
& M_{d}= \frac{B_{p} \cdot 2^{p} \cdot f y}{V_{m o}}<\frac{1 \cdot 2 \cdot 2 e \cdot f y}{V_{m o}} \\
& B_{p}=\frac{2 e}{2 p}
\end{aligned}
$$

Section modulus $\left(z_{e}\right)=3540$

$$
\begin{aligned}
& \text { Plastic modulus }(2 p)=3986.66 \\
& \therefore B_{p}=\frac{3540}{3986.66}, 0.8 p=\frac{1.2 \times 3540 \times 250}{1.10} \\
& M_{d}=\frac{0.88 \times 3986.66 \times 200}{1.10} \\
& M_{d}=797.332 \times 10^{3}<6965.455 \times 10^{3} \\
& M<M
\end{aligned}
$$

\therefore Hence safe
step, 7:- check for deflection,

$$
\begin{aligned}
\delta_{\text {max }} & =\frac{5 \omega l y}{384 E I} \\
& \Rightarrow \frac{5 \times 75 \times(800 \mathrm{~g}) 4}{384 \times 2 \times 10^{5} \times 1.06198 .5 \times 10^{4}} \\
\therefore \delta_{\text {max }} & =18.83 \mathrm{~mm}
\end{aligned}
$$

3. Design a s.s beam of effective Span 1.5 m Carrying a Concentrated load of 360 kN at mid Point: $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$

Given data,

$$
\begin{aligned}
\text { Effective } \left.\begin{array}{rl}
\text { Span } & =1.5 \mathrm{~m} \\
\text { load } & =360 \mathrm{kN} \\
f_{y} & =250 \mathrm{~N} / \mathrm{mm}^{2}
\end{array} \text {. } \begin{array}{rl}
\end{array} \text {. } \begin{array}{rl}
\end{array}\right) \\
\end{aligned}
$$

Step 1: Design BM \& SF

$$
\begin{aligned}
M_{u_{1}} & =\frac{\omega d}{4} \\
& =\frac{360 \times 1.5}{4} \\
M_{u_{i}} & =1 \mathrm{kN}-\mathrm{m} \\
V_{u} & =\frac{\omega_{0}}{2} \Rightarrow \frac{360}{2} \\
V_{u_{1}} & =180 \mathrm{kN}
\end{aligned}
$$

Step 2: Selection of Section

$$
\begin{aligned}
\partial_{p} & =\frac{M}{f_{y}} \times V_{m_{0}} \\
& =\frac{135}{250 \times 10^{6}} \times 1.1
\end{aligned}
$$

$$
\begin{aligned}
& =t / 88 \\
& =\frac{594 \times 10^{3}}{10^{3}} \mathrm{~cm}^{3} \\
2 p & =594 \mathrm{~cm}^{3}
\end{aligned}
$$

Trial Section [from steel Code book] ISMB300@44.2kg/m; Rp: $651.74 \mathrm{~cm}^{3} \alpha$
Step 3: Sectional Details [from ster l tablet]
Area $=5626 \mathrm{~mm}^{2}$
Depth of section. $h=3.00 \mathrm{~mm}$
width of flange, $b_{f}=140 \mathrm{~mm}$
Thickness of flange, $t_{f}=12.4 \mathrm{~mm}$
Thidenen of we $b, t_{\omega=}=7.5 \mathrm{~mm}$
Modulus, $I_{x x}=8603.6 \times 10^{9} \mathrm{~mm}^{4}$

$$
r_{1}=14 \mathrm{~mm}
$$

Step x:- (Section classification)

$$
\begin{aligned}
\varepsilon & =\sqrt{\frac{1}{250}} \\
& =\frac{250}{250} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow b / t_{f} & =\frac{b / 2}{t_{f}} \\
& =\frac{\frac{140}{2}}{12.9} \\
& =5.645 \mathrm{~mm} \\
\Rightarrow d / t_{6} & =\frac{h-2 f_{f}+\gamma /}{t_{\omega}} \\
& =\frac{300-2(12.4)+14}{7.5} \\
& =38.56 \mathrm{~mm}
\end{aligned}
$$

step 5: Check for shear,
Additional moment due to cad load,

$$
\begin{aligned}
W & =44.2 \mathrm{~kg}[\mathrm{~m} \\
& =44.2 \times 10 \mathrm{~N} / \mathrm{m} \\
& =4.42 \mathrm{~N} / \mathrm{m} \quad[: 1 \mathrm{~kg}=10 \mathrm{~N}] \\
W & =0.442 \mathrm{kN} / \mathrm{m} \\
M_{2}=\frac{\omega d^{2}}{\delta} & \Rightarrow \frac{0.442 \times 1.5^{2}}{8} \\
M_{u_{2}} & =0.124 \mathrm{kN} \quad
\end{aligned}
$$

Additional shear force,

$$
\begin{aligned}
V_{u_{2}} & =\frac{w_{0 l}}{2} \\
& =\frac{0.442 \times 1.5}{2} \\
v_{u_{2}} & =0.33 \mathrm{kN}
\end{aligned}
$$

$$
\text { Total moment } \begin{aligned}
M & =\mathrm{Mu}_{1}+\mathrm{Mu}_{2} \\
& =135+0.124 \\
M_{u} & =135.12 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Total shear $V=v_{u_{1}}+V_{u_{2}}$.

$$
\begin{aligned}
& 180+0.33 \\
V_{u} & =180.33 \mathrm{kN}
\end{aligned}
$$

Check for shear:

$$
V_{d}=\frac{V_{n}}{v_{m 0}}
$$

where.

$$
\begin{aligned}
v_{n}=v_{d} & =\frac{A_{v} \cdot f_{y}}{\sqrt{3}} \\
A_{v} & =h \times t_{w} \\
& =300 \times 7.5 \\
A_{v} & =2250 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v_{n}=v_{p}=\frac{A_{v} \cdot f_{y}}{\sqrt{3}} \\
& =\frac{2250 \times 250}{\sqrt{3}} \\
& V=3.24 .75 \times 10^{3} \mathrm{~N} \\
& V=324.75(\mathrm{cN} \\
& V_{d}=\frac{324-75}{1-10} . \\
& V_{d}=295.22 \mathrm{kN} \quad V_{u}=180.33 \mathrm{cN} \\
& v_{a}<v d
\end{aligned}
$$

\therefore Hence safe
Step G: Check for moment

$$
\begin{aligned}
M_{a} & =135.12 \mathrm{kN}-\mathrm{m} \\
V_{a} & =180.33 \mathrm{kN} \\
V_{d} & =295.22 \mathrm{kN} \\
0.6 V_{d} & =0.6 \times 295.22 \\
& =177.13
\end{aligned}
$$

$$
\begin{gathered}
M_{d}=\frac{B p \cdot z p \cdot f y}{V_{m o}}<\frac{\left(\cdot 2 \cdot z_{0} \cdot f y\right.}{V_{m 0}} \\
B_{p}=\frac{\partial_{c}}{\partial p}
\end{gathered}
$$

$$
\partial_{e}=573: 6 \text { (section modulus) }
$$

$$
{ }^{2} p=651.7 y \text { (plastic modulus). }
$$

$$
\begin{aligned}
& \therefore B_{p}=\frac{573.6}{651.7 y} \\
& B p=0.88
\end{aligned}
$$

$$
\begin{aligned}
& M d=\frac{0.88 \times 651.74 \times 250}{1.10}<\frac{1.2 \times 573.6 \times 250}{1010} \\
&=130.34 \times 10^{3} \mathrm{kN}-\mathrm{m}<156.43 \times 10^{3} \mathrm{kN}-\mathrm{m} \\
& M d<M
\end{aligned}
$$

\therefore thence safe.
step 7: check for de flection,

$$
\begin{aligned}
\delta_{\text {max }} & =\frac{540 l 4}{384 E I} \\
& =\frac{5 \times 360 \times 1500^{4}}{384 \times 2 \times 10^{5} \times 8603.6 \times 10^{4}} \\
\therefore \delta_{\text {max }} & =1.379 \mathrm{~mm}
\end{aligned}
$$

2. Determine the Center point load Gorging a Opacity of ISMB 300 , when it is cued ar a Simply supported of 5 m effective span. . Check if for shear, ne buckling, deflection \& web Crippling.
vol let us Consicher Central point load pubeam?

ISM 300
Effective span $=5 \mathrm{~m}$

$$
f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}
$$

Step 1:- Sectional details

$$
\begin{aligned}
& \text { Area }=5626 \mathrm{~mm}^{2} \\
& h=300 \mathrm{~mm} \\
& b_{f}=140 \mathrm{~mm} \\
& f_{f}=12.4 \mathrm{~mm} \\
& t_{w}=7.5 \mathrm{~mm} \\
& \partial_{e}=573.6 \times 10^{3} \mathrm{~mm}^{3} \\
& \partial_{p}=651.74 \times 10^{3} \mathrm{~mm}^{3} \\
& I_{x x}=8603.6 \times 10^{4} \mathrm{~mm}^{3} \\
& \gamma_{1}=14 \mathrm{~mm}
\end{aligned}
$$

Step 2:- Section classification:

$$
\begin{aligned}
\varepsilon & =\sqrt{\frac{250}{f y}}=\sqrt{\frac{250}{250}}=1 \\
\frac{b}{t_{f}} & =\frac{140 / 2}{12.4} \Rightarrow 5.64<9.4 \varepsilon(\text { semi Compact, } \\
\frac{d}{t_{\omega}} & =\frac{h-2\left(t_{f}+r_{1}\right)}{t_{\omega}}\left[\because d=\left(h-2\left(t_{f}+\gamma_{1}\right)\right]\right. \\
& =\frac{300-2(12.4+14)}{7.5} ; 32.96<84 \varepsilon \text { (plastic section) }
\end{aligned}
$$

Step 3:- Moment Graying Capacity of the beam

$$
\begin{aligned}
N_{d} & =\frac{\beta_{b} \cdot 2_{p} \cdot f_{y}}{V_{m 0}}<\frac{1.2 \cdot z_{g} \cdot f y}{V_{m 0}} \\
& =\frac{0.88 \times 651.74 \times 10^{3} \times 250}{1.10}<\frac{1.2 \times 573.6 \times 10^{3} \times 28}{1.10} \\
& =148.122 \times 10^{6}<156.436 \times 10^{6} \\
& =148.122 \mathrm{kN} \cdot \mathrm{~m}<156.43 \mathrm{kN}-\mathrm{m} \\
& \therefore M d=148.122 \mathrm{kN}-m
\end{aligned}
$$

B.M due to Central point load:-

$$
\begin{aligned}
M=\frac{\omega_{0}}{\varphi} & =\frac{P u \times 5}{4} \\
M & =1.25 p u \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Limiting Gre:

$$
\begin{aligned}
M & =M d \\
1.25 p_{u} & =M d \\
P_{u} & =\frac{148.122}{1.25} \\
& =118.497 \mathrm{kN}
\end{aligned}
$$

$$
\therefore \quad P_{u} \simeq 118.50 \mathrm{kN}
$$

Step 4:- Chick for shear $(\omega=P u)$

$$
\begin{aligned}
& V=\frac{\omega}{2}=\frac{118.50}{2}=59.25 \mathrm{kN} \\
& v<v d \\
& v_{d}=\frac{V_{n}}{V_{m 0}} \Rightarrow \frac{A_{\omega} \cdot f_{y}}{\sqrt{3} \cdot V_{m 0}}\left[\because v_{n}=\frac{A_{\omega} \cdot f y}{\sqrt{3}}\right] \\
&=\frac{h \times t_{\omega} \times f y}{\sqrt{3} \cdot V_{\text {ma }}}\left[\because A_{\omega}=h \times t_{\omega}\right] \\
&=295.23 \mathrm{kN} \\
& \therefore V<v_{d}
\end{aligned}
$$

Hence check for shear is: safe.
Step 5:- check for web buckling

$$
\text { Slenderness patio }=\frac{K C}{\gamma .} \text {. }
$$

where $k=2.5$

$$
\begin{gathered}
\frac{L}{\gamma}=\frac{h}{t_{w}} \\
\therefore \text { slenderness ratio }=2: 5 \times \frac{300}{85} \\
\therefore \text { from table } 9 \text { (c) ISO } 800: 2007
\end{gathered}
$$

$$
f_{c}=107 \mathrm{~N} / \mathrm{mm}^{2}
$$

we b buckling strength; $f_{c \omega}=\left(b_{1}+n_{1}\right) t_{\omega}-f_{c}$

$$
\begin{aligned}
n_{1} & =h / 2=\frac{300}{2}=1.50 \mathrm{~mm} \\
b_{1} & =100 \\
f_{c \omega} & =(100+150) 7.5 \times 107 \\
& =200.622 \mathrm{kN})>(259.25) .
\end{aligned}
$$

Step 6:- check for neb Crippling,

$$
f_{\omega}=\left(b_{1}+n_{2}\right) t_{\omega_{2}} \cdot \frac{f_{g}}{v_{m 0}}
$$

where,

$$
\begin{aligned}
n_{2} & =\left(2.5\left(f_{f}+r_{1}\right)\right) \\
& =(2.5(12.4+i(1)) \\
& =66 \\
f_{\omega} & =(100+66) \times 7.5 \times \frac{250}{1.10} \\
& =282.95 \mathrm{cN}
\end{aligned}
$$

Step 7: check for defrection:s

$$
\begin{aligned}
\text { Max - deflection } \delta_{\text {max }} & =\frac{w l^{3}}{48 E I} \\
w & =\frac{118.5}{1.5} \\
& =79
\end{aligned}
$$

1.5 is a factor of safety

$$
\begin{aligned}
\delta_{\text {max }} & =\frac{79 \times 10^{3} \times 5000^{3}}{48 \times 2 \times 10^{5} \times 8603.6 \times 10^{4}} \\
& =11.98
\end{aligned}
$$

$$
\text { Form ISO 800:2007 } \begin{aligned}
\frac{1}{300} & =\frac{5000}{300} \\
& =16.67
\end{aligned}
$$

\therefore terence safe.

Built up beams:-
Types:

1. plated type built up beam
a)

b)

2. Compound beans

3. Combinations

4. Design a S.s beam of 10 m span Crying ali factored load of $60 \mathrm{kN} / \mathrm{m}$. The depth of the beam should nit exceed 500 mm . The compression flange of the beam is laterally supported by foo Construction. Assume stiff bearing kngth $7,5 \mathrm{~mm}$
oof Given data,

$$
\begin{aligned}
\text { load }(\omega) & =60 \mathrm{kN} / \mathrm{m} \\
l & =10 \mathrm{~m} \\
f_{y} & =250 \mathrm{~N} / \mathrm{mm}^{2} \\
b_{1} & =75 \mathrm{~mm}
\end{aligned}
$$

Step 1:- Cal. of BM \& SF

$$
\begin{aligned}
M & =\frac{\omega l^{2}}{8} \\
& =\frac{60 \times 10^{2}}{8} \\
M_{u} & =750 \mathrm{kN}-\mathrm{m} \\
V & =\frac{\omega l}{2} \\
& =\frac{60 \times 10}{2} \\
V_{u} & =300 \mathrm{kN}
\end{aligned}
$$

Step 2:- Selection of section.

$$
\begin{aligned}
\partial_{p} & =\frac{M}{f_{y}} \times V_{m 0} \\
& \because \frac{750 \times 10^{6}}{250} \times 1.10 \\
& \therefore 3.3 \times 10^{6} \mathrm{~mm}^{3} \\
& \therefore \frac{3.3 \times 10^{6}}{10^{3}} \mathrm{~cm}^{3} \\
& =3300 \mathrm{~cm}^{3}
\end{aligned}
$$

[fore stack Goode book]
Here depth of beam restricted to 500 mm
\therefore Selecting ISMB $450 @ 72.4 \mathrm{~kg} / \mathrm{m}$
with Suitable Cover plates. [$[\because M, H, N, L]$

$$
2 p=153.3 .36 \mathrm{~cm}^{3}
$$

Section radubur.

$$
\begin{array}{rl}
\partial p \text { for plates } & =3300-1533.36 \\
& =1766.64 \cdot \mathrm{~cm}^{3} \\
\therefore \quad \partial p & 1766.64 \mathrm{~cm}^{3} .
\end{array}
$$

Let $A_{p}=$ Area of cacti plate
$d=c / c$ distance b / ω plates
$t_{p}=$ thickness of plate

$$
\begin{array}{r}
z_{p} \text { fo plates }\left(z_{p}\right)=\frac{A_{p} \times d}{v_{m 0}} \\
17.66 \cdot 6 y=\frac{\text { Ap .d }}{v_{m 0}}
\end{array}
$$

$$
A_{p}=\frac{1766.64 \times 1.1}{450}
$$

$$
\therefore A p^{\prime}=4.32 \mathrm{~mm}
$$

$$
=4320 \mathrm{~mm}^{2}
$$

Let us Selecting 20 m thickness of plate

$$
\begin{aligned}
b t p & =4320 \\
b & =\frac{4320}{20} \\
& =216 \approx 220 \mathrm{~mm} \\
\therefore b & =220 \mathrm{~mm}
\end{aligned}
$$

$\therefore 220 \times 20 \mathrm{~mm}$ side plate with ISMB 450
as a beam member.
Step 3:- Sectional details (using steel code \&
ISMB 450;

$$
\begin{aligned}
& A=72.4 \\
& A=92.27 \mathrm{~cm}^{2} \Rightarrow 9227 \mathrm{~mm}^{2} \\
& h=450 \mathrm{~mm} \\
& b_{f}=150 \mathrm{~mm} \\
& t_{f}=17.4 \mathrm{~mm} \\
& t_{\omega}=9.4 \mathrm{~mm} \\
& I_{x}=3.6390 .8 \mathrm{~cm}^{4} \\
& \quad=30390.8 \times 10^{4} \mathrm{~mm}^{4} \\
& \quad r f=15.00 \mathrm{~mm} \\
& 2_{e}=13.50 .7 \mathrm{~cm}^{3} \Rightarrow 1350.7 \times 10^{3} \mathrm{~mm}^{3} \\
& 2 p=1533.3 .6 \mathrm{~cm}^{3} \Rightarrow 1533.36 \times 10^{3} \mathrm{~mm}^{3} .
\end{aligned}
$$

Step a:- Section classification

$$
\begin{aligned}
\varepsilon & =\sqrt{\frac{250}{f y}} \\
& =\sqrt{\frac{250}{250}} \\
& =1 \\
b / t_{f} & =b / 2 / t f \Rightarrow 150 / 2 / 17.4 \Rightarrow 4.3<9.4 \varepsilon
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
& b / t_{c o} \Rightarrow \frac{h-2\left(t_{f}+r_{1}\right)}{t_{w_{1}}} \\
&=\frac{450-2(17.4+15)}{9.4} \\
&=40.97<84 \varepsilon \quad[\quad \text { Pg: } 18 \text { from } \\
&\text { Steel }: \text { code }]
\end{aligned}
$$

Step 5:- Check for shear.

$$
\begin{aligned}
v_{d}=\frac{v_{n}}{v_{m 0}} & \Rightarrow \frac{A v \cdot f_{y}}{\sqrt{3} \cdot V_{m 0}} \\
& \Rightarrow \frac{\left(h \cdot f_{m 0}\right) f_{y}}{\sqrt{3} \cdot V_{m 0}} \\
& =\frac{(450 \times 9 \cdot 4) 280}{\sqrt{3} \times 1.10} \\
& =555.04 \times 10^{3} \mathrm{~N} \\
v_{d} & =555.04 \mathrm{kN}
\end{aligned}
$$

\therefore thence safe
Step 6:- check for moment

$$
M_{u}=750(\mathrm{cN}-\mathrm{m}
$$

$$
\begin{aligned}
& v_{u}=300 \mathrm{kN} \\
& v_{d}=555.04 \mathrm{kN} \\
& 0.6 v_{d}=0.6 \times 555.04 \\
&=333.024 \\
& M_{d}=\frac{\beta_{p} \cdot 2 p \cdot f_{y}}{v_{m 0}} \cdot \frac{1.2 \cdot 2_{e} \cdot f_{y}}{v_{m 0}} \\
& \beta_{p}=\frac{2 e}{2 p} \\
&=\frac{1350.2 \times 10^{3}}{1533.36 \times 10^{3}} \\
&=0.88
\end{aligned}
$$

$\partial p=2 p$ of x-section $+2 p$ of plates.

$$
\begin{aligned}
& =1533.36 \times 10^{3}+\left(A_{p} \times d\right) \\
& =1533.36 \times 10^{3}+((220 \times 20)(4.50+20))
\end{aligned}
$$

$$
2 p=3601.36 \times 10^{3} \mathrm{~mm}^{3}
$$

$$
\begin{aligned}
& Q_{e}=I / y, \quad\left(\frac{650}{2}+\frac{20}{2}\right) \\
& I=\text { M.O.F. of } I_{x x}+1 \times 0.1 \text { of plater } \\
& \left.=30390.8 \times 10^{4}+2 \frac{220 \times 20^{3}}{12}+220 \times 20 \times(23.5)^{2}\right]
\end{aligned}
$$

$$
=79018.13 \times 10^{4} \mathrm{~mm}^{4}
$$

$$
\begin{aligned}
\partial_{e} & =I / y \\
& =\frac{79018.13 \times 10^{4} \mathrm{~mm}^{1}}{490 / 2} \\
& =34225 \times 10^{6} \mathrm{~mm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{p}=\frac{3.225 \times 10^{6}}{3601.36 \times 10^{3}} \\
& \beta_{p}=0.88
\end{aligned}
$$

$$
\begin{aligned}
\therefore M_{d} & =\frac{0.88 \times 3601.36 \times 10^{3} \times 250}{1.10} \cdot \leqslant \frac{1.2 \times 3.225 \times 10^{6}}{1010} \\
& =720.27 \times 10^{6}<879.54 \times 10^{6} \mathrm{~N}-\mathrm{m} \\
& \therefore M_{d<M}
\end{aligned}
$$

\therefore Hence safe.
Step -1:- check for deflect we buckling,

$$
\therefore \text { Slenderness patio }=\frac{k(}{r} \text {. }
$$

where $*=2.5^{\circ}$

$$
\begin{aligned}
\frac{L}{\gamma} & =\frac{h}{t_{\omega}} \\
& =\frac{4850}{9.9} \\
& =97.87
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Slendeqnes oqatio } & =2.5 \times 47.87 \\
& =119.675
\end{aligned}
$$

from table no: $q(c)$ fof $p g: 42$

$$
\begin{aligned}
& k l / r \quad f y \\
& \downarrow \\
& \downarrow \\
& x_{1}-110 \longmapsto 99.6^{\circ}-y_{1} \\
& x_{2} 120 \longrightarrow 83.7-y_{2} \\
& 119.675 \rightarrow \text { ? - 文 } 1 \\
& =83.7+\left(\frac{94.6-83 .}{120-110}\right) \times(119.675-179) \\
& =y_{1}+\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(z_{1}-x_{1}\right) \\
& =94.6+\frac{83.7-94.6}{120-110} \times(119.6-95-110) \\
& f_{c}=84.05 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Neb buckling strength;

$$
\begin{aligned}
f_{c_{\omega}} & =\left(b_{1}+n_{1}\right) t_{\omega} \cdot f_{c} \\
& =\left(75+\frac{950}{2}\right) 9.4 \times 84.05 \\
& =237.02 \times 10^{3} \mathrm{~N} \\
f_{c_{\omega}} & =237.02 \mathrm{kN}
\end{aligned}
$$

Step si-
Step 8:- neb Crippling,

$$
f_{\omega}=\left(b_{1}+n_{2}\right) t_{\omega} \cdot f g / l_{m 0}
$$

where,

$$
\begin{aligned}
n_{2} & =\left[2.5\left(t_{f}+r_{1}\right)\right] \\
& =2.5[1.9 .9+15) \\
& =81 \\
\therefore f_{\omega} & =(7.5+81) 9.4 \times \frac{250}{1.00} \\
& =333.27 \times 10^{3} \mathrm{~N} \\
\therefore f_{\omega} & =333.27 \mathrm{kN}
\end{aligned}
$$

Step. 9:- check for deflection,

$$
\begin{aligned}
\delta_{\text {max }} & =\frac{5000^{4}}{384 E I} . \\
& =\frac{5 \times 60 \times(10000)^{4}}{384 \times 2 \times 10^{5} \times 30390.8 \times 100^{4}} 7.9018 .13 \times 10^{4} \\
\therefore \delta_{\text {max }} & =49.43 \mathrm{~mm}
\end{aligned}
$$

As per Is Code Max deflection: $\frac{S \rho a n}{300}$

$$
\begin{aligned}
& =\frac{10000}{300} \\
& =3333
\end{aligned}
$$

$$
49.43>33.33
$$

\therefore Hence it is unsafe.

UNOT-3
Tension members ξ. Compression members

Compression member:-
*) structural member Carrying axial Compressive force is anon as compression member
Ex:- struts
Mode of failures:-
to Equating failure:
A very short length Compression member ξ the Compressive force.
2. Buckling failure:

A very long length compression under Compressive force

Ex:- Fan
Mixed mode:-
The above trey failures occurs in Same race

Slenderness ratio:-

$$
\begin{aligned}
& \lambda=\frac{\text { Effective length }}{r} \quad \text { Col }=3 i H B \\
& x_{\text {max }}=\frac{\text { leff }}{r_{\text {min }}}
\end{aligned}
$$

If slenderness ratio incqeases the strength of the Column decreases.
10 Determine the design axial load Crying Capacity of the Column IS HB $300 @ 58.8 \mathrm{~kg} / \mathrm{m}$. of the length of the Column is $3 \mathrm{~m} \xi$ its both ends are pinned

Given data,

$$
\begin{aligned}
& \text { ISHB300@58.skglm } \\
& \text { length of column =sm } \\
& \text { left }^{\text {e }} 3 \mathrm{~m} \\
& \quad=3000 \mathrm{~mm} \Rightarrow k \mathrm{c}
\end{aligned}
$$

load Carrying = ?
Buckling class sectional Details:

$$
\begin{aligned}
& \text { ISHB300@58-8kglm. } \\
& \text { Area }=74.85 \mathrm{~cm}^{2} \Rightarrow 748.5 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
h_{f} & =300 \mathrm{~mm} \\
h_{f} & =250 \mathrm{~mm} \\
t_{f} & =10.6 \mathrm{~mm} \\
t_{w} & =7.6 \mathrm{~mm} \\
r_{x x} & =12.95 \mathrm{~cm} \\
& =129.5 \mathrm{~mm} \\
r_{y y} & =5.41 \mathrm{~cm} \\
& =54.6 \mathrm{~mm} \\
\hat{B}_{f}= & \frac{300}{250}=1.2 \mathrm{~mm} \\
t_{f} & =10.6 \mathrm{~mm}<100 \mathrm{~mm}
\end{aligned}
$$

Buckling class ' b ' about ' x ' x '
Buckling class ' c ' about ' y '
Design strength of column for buckling class ' b '. Imperfection factor, $\alpha=0.34$ (from fable 7

$$
\begin{aligned}
& f_{c c}=\frac{\pi^{2} \mathrm{E}}{(k c / \Omega)^{2}}[p g: 34] \\
& \frac{k c}{9}=\frac{3000}{54.1} \Rightarrow 55.45
\end{aligned}
$$

where,
$f_{C C}=$ Euler buckling stress fro

$$
\left.\begin{array}{rl}
\therefore f_{c c} & =\frac{\pi^{2} \times 2 \times 10^{5}}{(55.45)^{2}} \\
f_{c c} & =641.98 \mathrm{~N} / \mathrm{mm}^{2}
\end{array}\right] \begin{aligned}
\lambda & =\sqrt{\frac{f_{y}}{f_{c c}}} \Rightarrow[\mathrm{Pg}: 34] \\
& =\sqrt{\frac{250}{641.98}} \\
\phi & =0.6\left[1+\alpha(\lambda-0.2)+\lambda^{2}\right] \\
& =0.5\left[1+0.34(0.62-0.2)+(0.62)^{2}\right] \\
\phi & =0.76
\end{aligned}
$$

Design Compressive stress, fed

$$
\begin{aligned}
f_{c d} & =\frac{f y / \operatorname{limo}}{\phi+\left[\phi^{2}-\lambda^{2}\right]^{0.5}}<f g / v_{m o} \\
& =\frac{250 / 1.10}{0.76+\left[0.76^{2}-0.62^{2}\right]^{0.5}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{227.27}{1.199}<227.27 \\
& f_{c d}=189.55 \mathrm{k} / \mathrm{mm}^{2}<227.27 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { load, } \begin{aligned}
P_{d} & =A \cdot f_{c d} \\
& =7485 \times 189.55 \\
& =1.418 \times 10^{6} \mathrm{~N} \\
P_{d} & =1418.7 \mathrm{kN}
\end{aligned} \text { from } \mathrm{code} \\
&
\end{aligned}
$$

Design strength of Column for buckling class ' C '. Imperfection $f a c t \theta), \alpha=0.49$

$$
\begin{aligned}
& f_{C C}=\frac{\pi^{2}}{\left(k\left(f_{9}\right)^{2}\right.} \\
& \frac{k c}{9}=\frac{3000}{54.1} \Rightarrow 55.45 \\
& \therefore f_{C c}=\frac{\pi^{2} \times 2 \times 10^{5}}{(55.45)^{2}} \\
& f_{c c}=641.98 N / m_{m}^{2} \\
& x=\sqrt{\frac{f y / f c c}{\frac{250}{641.98}}}
\end{aligned}
$$

$$
\lambda=0.62
$$

$$
\begin{aligned}
\phi & =0.5\left[4+\alpha(\lambda-0.2)+\lambda^{2}\right] \\
& =0.5\left[1+0.49(0.62-0.2)+0.622^{2}\right] \\
\phi & =0.79
\end{aligned}
$$

Design Comprexion stgers, fcd

$$
\begin{aligned}
f c d= & \frac{f y / I_{\mathrm{mo}}}{}+\left[\phi^{2}-\lambda^{2}\right]^{0.5} \\
= & \frac{250 / 1.10}{0.79+\left[0.79^{2}-0.62^{2}\right]^{0.5}} \\
f_{c d} & =177.61 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\text { laad, } \begin{aligned}
P_{d} & =A \cdot f c d \\
\text { (mm } & =7485 \times 17761 \\
& =1.329 \times 10^{6} \mathrm{~N} \\
P_{d} & =1329 \mathrm{kN}
\end{aligned}
$$

berobol.
2. Design a Column of I-section with a length of 3 m to Gary an axial Compressive force of 300 kN . The column is effectively held in position af both ends but nt restrained against potation
No)
Given data,
Compressive force $=300 \mathrm{kN}$
length of Column $=3 \mathrm{~m} \Rightarrow 3000 \mathrm{~mm}$
end Conditions: (Not restrained against rotation)

Effective length eff $=1.0 \mathrm{~L}$.

$$
=1(3) \mathrm{m}
$$

$$
K L=3000 \mathrm{mp}
$$

factored load $\left(P_{d}\right)=1.5 \times 3000$

$$
=450 \mathrm{kN}
$$

Assume $f_{c d}=90 \mathrm{~N} / \mathrm{mm}^{2}\left(90 \cdot F_{0} 130 \mathrm{~N} / \mathrm{mm}^{2}\right)$
step 7: (Selection of section).

$$
\begin{aligned}
& P_{d}=A_{c} \cdot F_{c d} \\
& A_{c}=\frac{450 \times 10^{3}}{90}
\end{aligned}
$$

$$
\begin{aligned}
& =5000 \mathrm{~mm}^{2} \\
A_{C} & =5000 \mathrm{~mm}^{2}
\end{aligned}
$$

let trial sections be find out
ISM $300 ; A_{\text {real }}, A=56.26 \mathrm{~cm}^{2}$

$$
=5626 \mathrm{~mm}^{2}
$$

IS WB 250; Area $A=52.05 \mathrm{~cm}^{2}$

$$
=5205 \mathrm{~mm}^{2}
$$

IstH 200; Area $A=50.94 \mathrm{~cm}^{2}$

$$
=5094 \mathrm{~mm}^{2} \simeq 5000 \mathrm{~mm}^{2}
$$

let us try with ISHB200, $A=5094 \mathrm{~mm}^{2}$
Step 2:- (Buckling class)

$$
\begin{aligned}
h & =200 \mathrm{~mm} \\
b & =200 \mathrm{~mm} \\
t_{f} & =9.0 \mathrm{~mm} \\
t_{\omega} & =7.8 \mathrm{~mm} \\
I_{x x} & =3721.8 \mathrm{~cm}^{4} \\
& =3721.8 \times 10^{4} \mathrm{~mm}^{4} \\
\gamma_{f} & =9 \mathrm{~mm} \\
\gamma_{x x} & =8.55 \mathrm{~cm}^{4} ; \quad \gamma_{r y}=4.42 \mathrm{~cm}^{4} \\
& =8.55 \times 10 \mathrm{~mm} \quad=4.42 \times 10 \mathrm{~mm}
\end{aligned}
$$

About $x x$-buckling clax-b
yy-buckling class-c
Step 3:-
Design stringts of Tolimn for buckling. class ' c ';

$$
\begin{aligned}
& \alpha=0.49 \\
f_{C C} & =\frac{\pi^{2} E}{(k L / r)^{2}} \\
& =\frac{\pi^{2} \times 2 \times 10^{5}}{\left(\frac{3000}{44.2}\right)^{2}} \\
f_{C C} & =\alpha 28.48 N /{m m^{2}}^{2} \\
\lambda & =\sqrt{\frac{f_{y}}{f_{c c}}} \Rightarrow \sqrt{\frac{250}{428.98}} \\
& \lambda=0.76 \\
\phi & =0.5\left[1+\alpha(x-0.2)+\lambda^{2}\right] \\
\phi & =0.5\left[1+0.49(0.76+0.2)+0.76^{2}\right] \\
& 0.926
\end{aligned}
$$

Design Compressive stogessifcd

$$
\begin{aligned}
f_{c d} & =\frac{f y / V_{m 0}}{\phi+\left[\phi^{2}-\lambda^{2}\right]^{0.5}} \\
& =\frac{250 / 1 \cdot 10}{0.926+\left[0.926^{2}-0.76^{2}\right]^{0.5}} \\
& =156.19 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

load, Pd A.fad
$=5094 \times 156.19$ 795.63

$$
=780.45 \times 10^{3} \mathrm{~N}
$$

$P_{d}=795 \mathrm{kN} \quad 795.63 \mathrm{kN}$
$\therefore \quad P<P d$ satisfied
Hence ok.
2. A column 4 m long has to support a factored load of 6000 kN . The column is effectively held in position af both ends ξ restrained in direction at one of the end. Design the Column using bean section \& plates

Given data,
Factored load $p=6000 \mathrm{kN}$
length of the wham $=4 \mathrm{~m}$ Effective length, $(K L)=0.8 L$
$=0.8 \times 4$
$=3.2 \mathrm{~m}$

Step 7:- (selection of section)
step Hi- Selection section)

$$
\begin{aligned}
P= & A_{c} \cdot f_{c} d \\
A_{c} & =\frac{6000 \times 10^{3}}{200} \\
& =30 \times 10^{3} \mathrm{~mm}^{2} \\
& =30000 \mathrm{~mm}^{2}
\end{aligned}
$$

JSHB 450@117.89 cm^{2}

$$
\begin{aligned}
A_{c} & =117.89 \mathrm{~cm}^{2} \\
& =11789 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of plates } & =30,000-11789 \\
& =18211 \mathrm{~mm}^{2}
\end{aligned}
$$

Providing a plates on both sides on 1 -section
$2 \times b \times t=182.11$

$$
\begin{aligned}
b_{x} t & =18211 / 2 \\
b x t & =9105.5 \quad
\end{aligned} \quad \begin{aligned}
& Z_{S H B} \\
& Z_{S N} \\
& \text { IS WB }
\end{aligned}
$$

Selecting rom of thickness

$$
\begin{aligned}
b \times 20 & =9105.5 \\
20 b & =9105.5 \\
b & =\frac{9105.5}{20} \\
& =455.27 \mathrm{~mm} \approx 500 \mathrm{~mm}
\end{aligned}
$$

- Selecting: $500 \times 20 \mathrm{~mm}$ on both sides of ISAR 450 as a built up member.

$$
\text { Over Ranging }=\frac{500-250}{2}
$$

$$
=125 \mathrm{~mm}
$$

Conditions:-

$$
125<12 t(0) 200
$$

(which ever is high).
$125<240 \mathrm{~mm}$ (tinct ok).

Step 2:- sectional defoils;

$$
\begin{aligned}
I_{x x} & =40349.9 \times 10^{4} \mathrm{~mm}^{4} \\
I_{y y} & =3045.0 \times 10^{4} \mathrm{~mm}^{4} \\
A & =11789 \mathrm{~mm}^{24}
\end{aligned}
$$

Sectional properties of built-cop member,

$$
\begin{aligned}
& A=A_{c}+A_{p} \\
& =11789+2(500 \times 20) \\
& A=31789 \mathrm{~mm}^{2} \\
& I_{x x}=I_{x x}+I_{x \times(~}(p) . \\
& \therefore 40.349 .9 \times 10^{4}+2\left[\frac{500 \times 20^{3}}{12}+(500 \times 20) \times 235^{2}\right] \\
& =150866.57 \times 10 \mathrm{~mm}^{4} \\
& I_{Y y}=I_{Y Y(z)}+I_{Y y(p)} \\
& =3045 \times 10^{4}+2\left[\frac{20 \times 500^{3}}{12}\right] \\
& =447116 \times 10^{4} \mathrm{~mm}^{4} \\
& \begin{aligned}
r_{y y} & =\sqrt{\frac{T_{y y}}{A}} \\
& =\sqrt{\frac{44791.64100^{4}}{31789}}
\end{aligned}
\end{aligned}
$$

$$
\therefore r_{y y}=118.59 \mathrm{~mm}
$$

Slenderness ratio, $\frac{k l}{r_{y y}}$

$$
\begin{aligned}
& =\frac{3200}{118.59} \\
& =26.98
\end{aligned}
$$

Buckling class acc) fa boult up members from table $9(c)$

$$
\begin{aligned}
& x_{1}-20 \rightarrow 224-y_{1} \\
& x_{2}-30 \rightarrow 211-y_{2} \\
& 2,-26.98 \rightarrow \text { ? } \\
& f_{c}=y_{1}+\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(2_{1}-x_{1}\right) \\
& f_{c}=224+\frac{211-224}{30-20}(26.98-20) \\
& f_{C}=214.92 \mathrm{~N} / \mathrm{mm}^{2} \\
& \therefore \quad P_{d}=A \times f l \\
& =31789 \times 214.92 \\
& =6.83 \times 10^{6} \mathrm{~N} \\
& \mathrm{Pd}=\begin{array}{c}
6832 \mathrm{kN} \\
6.83 \times 10^{2} \mathrm{NJ}
\end{array}>6000 \mathrm{kN}
\end{aligned}
$$

\therefore Hence ok

Tension members:-
Some elements of steel structures are structural members are subjected to two Pulling forces applied of both sides. Such structural members. that are in tended to resist tensile load age teamed as tension members or. 'tie" members.

A member Carrying direct tension is Galled as tie member

Types of tension members:lo Wires \& Cabers.
2. Rods \& wires
3. Single sturuct structural shapes \& plates
d. Built -up sections

Various forms of tension member:-

1. Circler.
2. Rectangular.
3. Angle [Equal quequal]

4: Double Angle:
5. stan angle.

Net Area:-
When a tension member is joined to any other member by rivets or hole which gross sectional area is reduced by the holes. Hence The tension members age designed for its net Sectional area.

For chain riveting:-

$$
A_{n}=(b-n d) t
$$

For zig-zag riveting:-

$$
A_{n}=\left(b-n d+\varepsilon \frac{p^{2}}{4 g}\right) t
$$

4: Double Tinge:
5 . stan mingle.
Net Area:-
When a tension member ir joined to any other member by rivets or hole which gross sectional area is reduced by the holes. Hence The tension members age designed for its net Sectional area.

For chain riveting:-

$$
A_{n}=(b-n d) t
$$

For zig-zag riveting:-

$$
A_{n}=\left(b-n d+\varepsilon \frac{p^{2}}{4 g}\right) t
$$

4. Determine the design terisile striegth of $160 \times 8 \mathrm{~mm}$ plate with holes of $18 \mathrm{~mm} \phi$ as shown in fig.

8^{80} Di of holes $=18 \mathrm{~mm}$
For chain riveting:

$$
\begin{array}{ll}
7-1-h^{n 0}=3 & 1,6,5-n 01 \\
=3
\end{array}
$$

For zig-zag riveting;

$$
7=\frac{1,2,3,2,5}{2-3-5-8} \quad 1,2,5=5
$$

$$
\begin{aligned}
& A_{n}=\left(b-n d+\frac{\varepsilon p^{2}}{4 g}\right) t \\
&=160-5 \times 18+\frac{4 \times 40^{2}}{4 \times 25} \times 8 \\
& A_{n}=1072 \\
& \hline 78 \mathrm{~mm}^{2}
\end{aligned}
$$

Fol zig- wag riveting,

$$
\begin{aligned}
7-1 & =2-4-10 \\
A_{n} & =\left(b-n d+\frac{\varepsilon p^{2}}{4 g}\right) t \\
& =\left(160-3 \times 18+\frac{1(40)^{2}}{4 \times 25}\right) \times 8 \\
A_{n} & =976 \mathrm{~mm}^{2}
\end{aligned}
$$

Design tensile strength is the min. of the followings:

1. Design strength due to yielding of glass gross section ($T d g$).
2. Design strength due to rupture of critical section ($T_{d n}$)

$$
\begin{aligned}
T_{d g} & =A g \cdot f y \int_{m o} \\
& =(160 \times 8) 250 / 1.10 \\
& =290.9 \mathrm{kN} \\
T_{d n} & =0.9 \mathrm{An} \cdot f u / V_{\mathrm{m}} \\
& =\frac{0.9(848) \times 40}{1.25} \\
& =250.3 \mathrm{kN}
\end{aligned}
$$

5.).

Plate - $140 \times 12 \mathrm{~mm}$
hole $\phi=20 \mathrm{~mm}$
For chain riveting:

$$
\begin{aligned}
& 11-1-10-9-7-12 \\
& A_{n}=(b-n d) t \\
&=140-4(20) \times 12 \\
& A_{n}=720 \mathrm{~mm}^{2}
\end{aligned}
$$

For Fig-zag riveting:

$$
\begin{aligned}
& 11-1-2-3-4-5-6-14 \\
& A_{n}=\left(b-n d+\frac{\varepsilon p^{2}}{4 g}\right) \times t \\
&=\left(140-6(20)+\frac{5 \times 45^{2}}{4 \times 20}\right) \times 12 \\
& A_{n}=1758.75 \mathrm{~mm}^{2}
\end{aligned}
$$

Fig-さag riveting:.

$$
\begin{aligned}
& 11-1-2-\delta-6-14 \\
& A_{n}=\left(b-n d \delta+\frac{\delta p^{2}}{4 g}\right) \times 1 \\
&=\left(140-4(20)+\frac{2 \times 45^{2}}{4 \times 20}\right) \times 12 \\
&=1327.5 \mathrm{~mm}^{2}
\end{aligned}
$$

Design tensile strength is the min. of the following:

1. Design stangth due to yielding of gross Section ($T_{d g}$)
2. Design strength due to rupture of Gitical Section (Ton)

$$
\begin{aligned}
T_{d g} & =A g \cdot f g(20) \\
& =\frac{(190 \times 12) 250}{1.10} \\
& =\frac{381.81 \mathrm{kN}}{} \\
T_{d n} & =0.9 \cdot A_{n} \cdot f_{4} / r_{m 1} \\
& =\frac{0.9 \times 720 \times 410}{1.25} \\
& =212.54 \mathrm{kN}
\end{aligned}
$$

6)

10) For chain riveting:

$$
\begin{aligned}
7- & 1-6-5-8 \\
A_{n} & =\left(b-d_{n}\right) t \\
& =[180-18(3)] \times 20 \\
& =2520 \mathrm{~mm}^{2}
\end{aligned}
$$

for $\dot{2-i g-2 a g ~ r i v e t i n g: ~}$

$$
\begin{aligned}
& 7-1-2-3-4-5-8 \\
A_{n} & =\left[b-n d+\frac{\varepsilon p^{2}}{4 g}\right] \times f \\
& =\left[\left(80-(5 \times 18)+\frac{4 \times 30^{2}}{4 \times 30}\right] \times 20\right. \\
& =2400 \mathrm{~mm}
\end{aligned}
$$

for zig-zag, rivefing:-

$$
\begin{aligned}
& 7-1-2-4-10 \\
& A_{n}=\left[b-n d+\frac{\varepsilon p^{2}}{4 g}\right] \times t \\
& =\left[180-3(18)+\frac{30^{2}}{4 \times 30}\right] \times 20 \\
& =2670 \mathrm{~mm}^{2} \text {. } \\
& T_{d g}=A g \cdot f g / I m o \\
& =\frac{(180 \times 20) \times 200}{1010} \\
& =818.18 \times 10^{3} \mathrm{~N} \\
& \text { Torg }=818.18 \mathrm{kN} \\
& T_{d n}=0.9 \mathrm{An} \cdot f_{u} / v_{n 1} \\
& =\frac{0.9 \times 250 \times 410}{1.1025} \\
& T_{0}=743.9 \mathrm{kN}
\end{aligned}
$$

i) For chain riveting:

$$
\begin{aligned}
& 5-1-3-6 \\
& A_{n}=\left(b-d_{n}\right) f \Rightarrow[130-18(2)] \times 12 \\
& A_{n}=1128 \mathrm{~mm}^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 7-2-4-8 \\
& A_{n}=(b-(n)-[130-18(2)] \times 12 \\
& \\
& A_{n}=1128 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
T_{d g} & =A g f y / \rho_{m 0} \\
& =\frac{(130 \times 12) 250}{1.10} \\
& =35.4 .51 \mathrm{kN} \\
T_{d n} & =0.9 A_{n} \cdot f_{u} / V_{m i} \\
& =\frac{0.9 \times 1128 \times 410}{1.25} \\
& 332.98 \mathrm{kN}
\end{aligned}
$$

14218
To determine the design tensile strength of the dingles-
i) The gusset is Connected to 90 mm lengths.
2). If the gusset is Connected to 60 mm length then $g=50 \mathrm{~mm}$ for 90 mm length
$g=30 \mathrm{~mm}$ for 60 mm length
The design tensile sroigth es least of $T_{d g} \cdot J_{d n}$
\& Td b
Where; Tog - Design staengtit due to yield of g / s
$T_{d n}$ - due t_{0} rupture of Critical section
T_{b} - due to block shear

$$
\begin{aligned}
& T_{d g}=\frac{A g x \cdot f y}{V_{m 0}} \\
& T_{d n}=0.9 A_{n c} \cdot f_{y} / \nu_{m 1}+\frac{\beta \cdot A g o \cdot f_{y}}{D_{m 0}} \\
& T_{d b}=\frac{A v g \cdot f_{y}}{\sqrt{3} \cdot V_{m 0}}+\frac{0.9 A A_{n} \cdot f_{4}}{\nu_{m 1}}
\end{aligned}
$$

where $\beta=1.4-0.076\left(\frac{\omega}{t}\right)\left(\frac{f_{y}}{f_{u}}\right)\left(\frac{b_{s}}{l_{c}}\right)$

$$
\begin{aligned}
& b_{s}=\omega+\omega_{1}-t \\
& \omega=\text { out stand leg oinff }=60 \mathrm{~mm}
\end{aligned}
$$

8. Determine the design tensile strength of roof member IS $90 \times 60 \times 6 \mathrm{~mm}$ connect to gusset plate of smm thicferes by 4 mm welding. He effective length of weld is 200 mm

(0)

Given data,
Two IS A $90 \times 60 \times 6 \mathrm{~mm}$
length of weld $=20 \mathrm{~mm}$
design strength due to yielding of $g l s$;

$$
T_{d g}=\frac{A g-f_{y}}{V_{m 0}} ; f_{y}=250, D_{m 0}=1.1
$$

$\mathrm{Ag}=1137 \mathrm{~mm}{ }^{2}$ from steel table $(90 \times 60 \times 8$)

$$
I_{d g}=\frac{A g \cdot f y}{V_{m 0}} \Rightarrow \frac{1137 \times 2.00}{111} \Rightarrow 258 \cdot 40 \mathrm{kN}
$$

Design strength che to rupture of critical Section:

$$
\begin{aligned}
& F_{n}=\frac{0.9 A n c \cdot f_{y}}{D_{m_{1}}}+\frac{\beta \cdot A_{g} \cdot f_{y}}{V_{m o}} \\
& \beta=1.4-0.076\left(\frac{\omega}{t}\right)\left(\frac{f_{y}}{f_{u}}\right)\left(\frac{b_{s}}{l c}\right)
\end{aligned}
$$

where, $\omega=60 \mathrm{~mm}, L_{c}=200 \mathrm{~mm}, b_{s}=60 \mathrm{~mm}, t=6 \mathrm{~m}$

$$
\begin{aligned}
& \beta=1.4-0.076\left(\frac{60}{6}\right)\left(\frac{250}{410}\right)\left(\frac{60}{200}\right) \Rightarrow 1.26 \\
& \beta<\frac{f_{u} \cdot v_{m 0}}{f_{y} \cdot x_{m 1}} \Rightarrow \frac{410 \times 1.10}{250 \times 1.25} \Rightarrow 1.26<1.44 \\
& \begin{array}{l}
A_{n c}=2(90-6 / 2)_{6}=1044 \mathrm{~mm}^{2} \\
A_{g_{0}}=2(60-6 / 2) 6=584 \mathrm{~mm}^{2}
\end{array} \quad T_{\text {on }}=\frac{0.9 \mathrm{Anc}^{2} \cdot f_{y}}{V_{m 1}}+\frac{\beta \cdot \text { Ago }_{0} \cdot f_{y}}{V_{\mathrm{mo}}} \\
& \begin{aligned}
\text { Ago }=2(60-6 / 2) 6=684 \mathrm{~mm}^{2} \quad & =504.05 \mathrm{kN}
\end{aligned}
\end{aligned}
$$

Roof Trusses:-
spogravity Self of.
Asbestos Cement; Ac-sheet - $130 \mathrm{~N} / \mathrm{mm}^{2}$
Galvanised ran: GI sheet $55 \sim / \mathrm{mm}^{2}$
Types of roof truss:

1. King post:-
 Gupto 6 m spas
2. Queen post:-

3. Howe post trass (8) Howe triangular:-

upton 9-15m span:
dp. French type Trusses:-

4. pratt type torus:-

Truss Components:-

$$
\rightarrow(1-2-3-4-5-6-7)-\text { Rafters }
$$

Top chord members,
They undergo Compression.

$$
\rightarrow(8-9-10-11)-(T I E S)
$$

Bottom chord members,
They undergo tension.

$$
\rightarrow(2,12),(6,13),(3,12)(5,13)
$$

(struts) middle members.

Compressive force
major minot
(strings) middle men bert.

Tension develops.

Pitch:-

$$
\text { Pitch }=\frac{\text { Height }}{\text { span }}=\frac{h}{l}
$$

For G.I sheet which pitch $p=\frac{1}{6}$ for $A C$ sheet $p=\frac{1}{12}$
spacing of trusses:-

1. 3 m . to 4.5 m - upton 15 m span
2. 4.5 to 6 m - upto $15-30 \mathrm{~m}$ spas

Purlin:-
It should be located on panel pout of top chord members Generally the spacing of Purlin varies from 1.35 m to 2 m .

Angle purling are used for smaller
value of spacing [spacing of truss $3 \% \mathrm{~km}$]. for medium sizes 14 to channel sections are used.

Sheeting:-

\rightarrow For 8 Corragulations overall width will be 660 mm :
\rightarrow For 10 Corragulations Overall width will be 810 mm
\rightarrow In general the roof Cover celt be as o * Covering weight including lap connectér 100 to $150 \mathrm{~N} / \mathrm{mo}^{2}$. This is for GI I sheet. Fo $A C$ sheet 170 to $200 \mathrm{~N} / \mathrm{mm}^{2}$.
\rightarrow weight of purlin $-1000,10,120 \mathrm{~N} / \mathrm{mm}^{2}$
Imposed or Live load:- [IS:875]
\rightarrow apto 10° slope will be $0.75 \mathrm{kV} / \mathrm{m}^{2}$
\rightarrow For mire fan 1° slope will be 0.75 to 0.02
\rightarrow However minimum slope $0.4 \mathrm{kN} / \mathrm{m}^{2}$
Wind load [IS:875 part 3]:
\rightarrow Design wind speed,

$$
\omega_{x}=k_{1} k_{2} k_{3} v_{b}
$$

where,
$k_{1} \rightarrow$ Risk Coefficient
$K_{2} \rightarrow$ Terrain height \& structure Size factor.
$k_{3} \rightarrow$ Topography factor.
Load Combinations:-
Dead load + Live load
Dead load + wind load.
Dead load + sheet load
9. A symmetrical torus of span 20 m \& height Sm are spaced at $4.5 \mathrm{c} / \mathrm{c}$. Design channel section purlin to be placed at suitable distance to resist the following loads.
or. of sheeting including bolts $=171 \mathrm{~N} / \mathrm{m}^{2}$
Live load $=04 \mathrm{kN} / \mathrm{m}^{2}$
wind toad $=1.2 \mathrm{kN} / \mathrm{m}^{2}$
Spacing of purling $\quad \therefore 1.4 \mathrm{~m}$
08
Given data,
Span, of truss $(l)=20 \mathrm{~m}$

$$
\text { Height }(h)=5 \mathrm{~m}
$$

Spacing of taus $(s)=4.5 \mathrm{c} / \mathrm{c}$
Cine load $=0.4 \mathrm{kN} / \mathrm{m}^{2}$
Wind load $=1,2 \mathrm{ku} / \mathrm{m}^{2}$
Dead load = $17.1 \mathrm{~km} / \mathrm{m}^{2}$
spacing of Purlin $=1.4 \mathrm{~m}$
inclination, $\tan \theta=\frac{5}{10}$

$$
\begin{aligned}
\theta & =\operatorname{Tan}^{-1} \frac{5}{10} \\
\therefore & \theta+26^{\circ}
\end{aligned}
$$

Design for $D L+L C$,

- $D E$ fo sheeting $=171 \mathrm{~N} / \mathrm{mm}^{2}$
at $D C$ for Purlin is $125 \mathrm{~N} / \mathrm{mm}^{2}$
$\begin{aligned} \text { Total } D C & =296 \sim / m^{2} \\ & =0296^{\circ} \mathrm{kN} / \mathrm{m}^{2}\end{aligned}$
$L . L=0.4 \mathrm{kN} / \mathrm{m}^{2}$
Total load $=$ D. $C+L \cdot C$
$\therefore 0.296+0.4$

$$
\Rightarrow 0.696 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\therefore \text { facfaed. Load } \begin{aligned}
\omega_{u} & =1.5 \times 0.696 \\
& =1.044 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

01418
So, per unit length meter.

$$
\begin{array}{rlrl}
u d l(\omega) & =1.4 \times 1.044 & \text { (sou) } & {[\because \text { spacing of }} \\
& =1.4616 \mathrm{kN} / \mathrm{m} & \left.\quad \text { Purlin } \times \omega_{u}\right]
\end{array}
$$

Normal load to sheeting (ie.,.)

$$
\text { vertical loads }=1.46 \cos \theta
$$

Paractlel load to sheet ting (ie..)

48 rental loads $=1.46 \sin \theta$

$$
\begin{aligned}
b & =1.46 \cos 26^{\circ} \\
& =1.312 \\
& =0.64
\end{aligned}
$$

Bending moment,

$$
\begin{gathered}
M_{x}=\frac{\omega_{x} l^{2}}{8} \Rightarrow \frac{1.312(4.5)^{2}}{8} \\
M_{y}=\frac{\omega_{y} l^{2}}{8} \rightarrow \frac{0.64(4.5)^{2}}{M_{x}}=3.32 k_{N-m}^{8} \\
M_{y}=1.62 k n-m
\end{gathered}
$$

Scanned by CamScanner

Shear force, $v_{x}=\frac{\omega_{x}}{2} \Rightarrow \frac{1.312 \times 4.5}{2}$

$$
\begin{gathered}
\mid v_{x}=2.95 \mathrm{kN} \\
\therefore v_{y}=\frac{\omega_{y}!}{2} \Rightarrow \frac{0.64 \times 4.5}{2} \\
\quad v_{y}=1.44 \mathrm{kN}
\end{gathered}
$$

let us fry. ISMC 125 [channel sections are used fo truss ξ Tho purines.

$$
\begin{aligned}
& \text { } 亠 p_{x} \text { required }=\left(\frac{M_{x}}{f_{y}} \times l_{m a}\right)+2.5 \frac{d}{d} \cdot \frac{M_{y}}{f_{y}} \cdot V_{m 0} \\
& 2 p_{x}=\left(\frac{3.32}{250} \times x \times 0\right)+2.5 \frac{65}{125} \times \frac{1.62}{250} \times 1010
\end{aligned}
$$

where,

$$
\begin{aligned}
d & =h-2\left(t_{f}+r_{1}\right) \\
d & =89.8 \mathrm{~mm} \\
2 p_{x} & =\left(\frac{32 \times 10^{6}}{250} \times 1.10\right)+2.5\left(\frac{89.8}{65}\right) \times \frac{1.62 \times 10^{6}}{250} \times 1.10 \\
& =14608+3.45 \times 7128 \\
& =39.19 \times 10^{3} \mathrm{~N}-\mathrm{mim}
\end{aligned}
$$

$$
\Rightarrow 39.19 \mathrm{kN}-\mathrm{m}
$$

∂p for ISMC-125 $=77.15 \mathrm{~cm}^{3}$
Check for moment:-

$$
\begin{aligned}
& M d x=\frac{\beta_{p} \cdot z_{p x} \cdot f_{y}}{U_{\text {mo }}} \\
& (\because B p=1) \\
& \frac{b}{t_{f}}=\frac{65}{8.1}=8.02<9.4 \mathrm{E} \\
& \therefore M_{d_{x}}=\frac{1 \times 77.15 \times 10^{3} \times 250}{1.1000} \\
& \therefore M d x=17.53 \mathrm{kN}-\mathrm{m} \\
& M d y=\frac{\beta_{p}: Z p_{y} f_{y}}{V_{m 0}} \\
& z_{p y}=\frac{b^{2}+f^{2}}{2} \Rightarrow \frac{65^{2} \times 8 \cdot 1}{2} \\
& { }^{2} p_{1}=1711 \cdot 25 \mathrm{~mm}^{3} \\
& \therefore \frac{M d g}{}=\frac{1 \times 1714.25 \times 250}{1.10} . \\
& =3.88 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
\frac{M x}{M d x}+\frac{M y}{M d y} & \Rightarrow \frac{3.32}{1.7 .53}+\frac{1.62}{3.88} \\
& =0.61<1
\end{aligned}
$$

\therefore Hence ok
Check for DL G WH action:-

$$
\begin{aligned}
D L & =0.296 \mathrm{kN} / \mathrm{m}^{2} \\
& =0.296 \times 1.4 \\
& =0.4144 \mathrm{lc} / \mathrm{m} \\
\text { factored load } & =1.5 \times 0.4144 \\
& =0.6216 \mathrm{kN} / \mathrm{m} \\
\text { UL } & =1.2 \mathrm{kN} / \mathrm{m}^{2} \\
& =1.2 \times 1.4 \mathrm{kN} / \mathrm{m} \\
& =1.68 \mathrm{kN} / \mathrm{m} \\
\text { factored load } & =1.5 \times 1.68
\end{aligned}
$$

Factored D iL normal to sheeting:

$$
\text { Factored } \begin{aligned}
D . C & =0.6216 \cos \theta \\
& =0.6216 \times \cos 26^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =0.558 \mathrm{kw} / \mathrm{m} \\
\omega_{x} & =0.55-\text { factored load } \\
& =0.55-2.52 \\
\omega_{u} & =-1.96 \mathrm{kN} / \mathrm{m} \\
\omega_{y} & =0.6216 \sin \theta \\
& =0.62\left(6,\left(\sin 26^{\circ}\right)\right. \\
& =0.27 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Bending moment:

$$
\begin{aligned}
C_{1} . M_{x}=\frac{\omega_{x} l^{2}}{8} & \rightarrow \frac{1.96 \times 4.5^{2}}{8} \\
& =4.96\left(\mathrm{CN}^{2} \mathrm{~m}\right. \\
M_{y}=\frac{\omega_{y} l^{2}}{8} & \Rightarrow \frac{0.27 \times 4.5^{2}}{8} \\
& =0.68 \mathrm{lcN}-\mathrm{m}
\end{aligned}
$$

From table (14)

$$
\begin{aligned}
& \Rightarrow \frac{h}{t f}<1 \\
& 6+15.5 \\
&=15.43 \\
& k_{1 / g}=\frac{1.2 \times 4500}{19.2}=281.25
\end{aligned}
$$

$$
\begin{gathered}
h / t_{f}=15.93 \\
\text { het } 14-126.9 \quad 11.9 \\
280-122.3107 .8 \\
290-\left(\frac{11.90-126.90}{16-14}\right) \times(15.43-14) \\
\Rightarrow 126.9+(16.17
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow 122.3+\left(\frac{1071.8-122.3}{16-14}\right) \times(15.43-14) \\
& y=111.93
\end{aligned}
$$

$$
\begin{aligned}
f_{b d} \Rightarrow & 280-116.17 \\
& 290-111.93 \\
& 281.95-?
\end{aligned}
$$

Frod pron tasta) (p)

$$
\begin{aligned}
f_{b d} & =116.17+\left(\frac{111.93-186.17}{290-280}\right) \times(281.25-280) \\
& =115.64
\end{aligned}
$$

for from table $13(a):-p g$ (ss)

$$
\begin{aligned}
& 100-77.3 \\
& 150-106.8 \\
& 115.64-? \\
& \Rightarrow 77.3+\left(\frac{106.8-77.3}{150-100}\right) \times(115.64-100) \\
& =86.52 \\
& M_{d x}=\beta_{p} \cdot 7_{p} \cdot f_{b d} \\
& =1 \times 77.15 \times 10^{3} \times 86.52 \\
& =6.672 \mathrm{kov-m}
\end{aligned}
$$

Combined Section:-

$$
\begin{aligned}
\frac{M_{x}}{M_{d x}}+\frac{M_{y}}{M_{d y}} & \Rightarrow \frac{4.96}{6.672}+\frac{0.68}{3.88} \\
& =0.91<1
\end{aligned}
$$

\therefore Hence ole

